酶加速催化 DNA 电路可实现对细菌病原体的快速和一次性检测。

IF 10.7 1区 生物学 Q1 BIOPHYSICS
{"title":"酶加速催化 DNA 电路可实现对细菌病原体的快速和一次性检测。","authors":"","doi":"10.1016/j.bios.2024.116822","DOIUrl":null,"url":null,"abstract":"<div><div>Catalytic DNA circuits, serving as signal amplification strategies, can enable simple and accurate detection of pathogenic bacteria in complex matrices but suffer from low reaction rates and depths. Herein, we design an enzyme-accelerated catalytic hairpin assembly (EACHA) in which duplex DNA products are converted into hairpin reactants to continue participating in the next circuit reaction with the assistance of RNase H. Profiting from the high recyclability of the reactants, EACHA exhibits an approximately 37.6-fold enhancement in the rate constant and a two-order-of-magnitude improvement in sensitivity compared to conventional catalytic hairpin assembly (CHA). By integrating an allosteric probe with EACHA, a one-pot method is developed for rapid and direct detection of <em>S. enterica</em> Enteritidis (<em>S.</em> Enteritidis)<em>.</em> This method is capable of detecting 15 CFU mL<sup>−1</sup> of <em>S.</em> Enteritidis within 20 min, which is superior to that of real-time PCR. By testing 60 milk samples, we demonstrate this method's high accuracy in discriminating contaminated samples, with an area under the curve (AUC) of 0.997. Moreover, this method can be employed to accurately diagnose early-stage infected mice, with an AUC of 1.00 for feces samples and 0.986 for serum samples. Therefore, this study offers a simple and feasible method for identifying pathogens in complex matrices.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzyme-accelerated catalytic DNA circuits enable rapid and one-pot detection of bacterial pathogens\",\"authors\":\"\",\"doi\":\"10.1016/j.bios.2024.116822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Catalytic DNA circuits, serving as signal amplification strategies, can enable simple and accurate detection of pathogenic bacteria in complex matrices but suffer from low reaction rates and depths. Herein, we design an enzyme-accelerated catalytic hairpin assembly (EACHA) in which duplex DNA products are converted into hairpin reactants to continue participating in the next circuit reaction with the assistance of RNase H. Profiting from the high recyclability of the reactants, EACHA exhibits an approximately 37.6-fold enhancement in the rate constant and a two-order-of-magnitude improvement in sensitivity compared to conventional catalytic hairpin assembly (CHA). By integrating an allosteric probe with EACHA, a one-pot method is developed for rapid and direct detection of <em>S. enterica</em> Enteritidis (<em>S.</em> Enteritidis)<em>.</em> This method is capable of detecting 15 CFU mL<sup>−1</sup> of <em>S.</em> Enteritidis within 20 min, which is superior to that of real-time PCR. By testing 60 milk samples, we demonstrate this method's high accuracy in discriminating contaminated samples, with an area under the curve (AUC) of 0.997. Moreover, this method can be employed to accurately diagnose early-stage infected mice, with an AUC of 1.00 for feces samples and 0.986 for serum samples. Therefore, this study offers a simple and feasible method for identifying pathogens in complex matrices.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566324008297\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566324008297","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

催化 DNA 电路作为信号放大策略,可在复杂基质中简单、准确地检测病原菌,但存在反应速率低、深度小的问题。在这里,我们设计了一种酶加速催化发夹组装(EACHA),其中双链 DNA 产物在 RNase H 的帮助下转化为发夹反应物,继续参与下一个回路反应。与传统的催化发夹组装(CHA)相比,EACHA 利用反应物的高可回收性,将速率常数提高了约 37.6 倍,灵敏度提高了两个数量级。通过将异构探针与 EACHA 相结合,开发出了一种快速直接检测肠炎双球菌(S. Enteritidis)的一锅法。该方法能在 20 分钟内检测出 15 CFU mL-1 的肠炎双球菌,优于实时 PCR 方法。通过检测 60 份牛奶样本,我们证明了该方法在鉴别污染样本方面的高准确性,其曲线下面积(AUC)为 0.997。此外,这种方法还能准确诊断早期感染的小鼠,粪便样本的 AUC 为 1.00,血清样本的 AUC 为 0.986。因此,这项研究为鉴定复杂基质中的病原体提供了一种简单可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enzyme-accelerated catalytic DNA circuits enable rapid and one-pot detection of bacterial pathogens
Catalytic DNA circuits, serving as signal amplification strategies, can enable simple and accurate detection of pathogenic bacteria in complex matrices but suffer from low reaction rates and depths. Herein, we design an enzyme-accelerated catalytic hairpin assembly (EACHA) in which duplex DNA products are converted into hairpin reactants to continue participating in the next circuit reaction with the assistance of RNase H. Profiting from the high recyclability of the reactants, EACHA exhibits an approximately 37.6-fold enhancement in the rate constant and a two-order-of-magnitude improvement in sensitivity compared to conventional catalytic hairpin assembly (CHA). By integrating an allosteric probe with EACHA, a one-pot method is developed for rapid and direct detection of S. enterica Enteritidis (S. Enteritidis). This method is capable of detecting 15 CFU mL−1 of S. Enteritidis within 20 min, which is superior to that of real-time PCR. By testing 60 milk samples, we demonstrate this method's high accuracy in discriminating contaminated samples, with an area under the curve (AUC) of 0.997. Moreover, this method can be employed to accurately diagnose early-stage infected mice, with an AUC of 1.00 for feces samples and 0.986 for serum samples. Therefore, this study offers a simple and feasible method for identifying pathogens in complex matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信