设计用于降解邻苯二甲酸酯的细菌生物催化剂。

IF 5.7 2区 生物学
Gonzalo Durante-Rodríguez, Sofía de Francisco-Polanco, Unai Fernández-Arévalo, Eduardo Díaz
{"title":"设计用于降解邻苯二甲酸酯的细菌生物催化剂。","authors":"Gonzalo Durante-Rodríguez,&nbsp;Sofía de Francisco-Polanco,&nbsp;Unai Fernández-Arévalo,&nbsp;Eduardo Díaz","doi":"10.1111/1751-7915.70024","DOIUrl":null,"url":null,"abstract":"<p>Phthalic acid esters (PAEs) are synthetic diesters derived from <i>o</i>-phthalic acid, commonly used as plasticizers. These compounds pose significant environmental and health risks due to their ability to leach into the environment and act as endocrine disruptors, carcinogens, and mutagens. Consequently, PAEs are now considered major emerging contaminants and priority pollutants. Microbial degradation, primarily by bacteria and fungi, offers a promising method for PAEs bioremediation. This article highlights the current state of microbial PAEs degradation, focusing on the major bottlenecks and associated challenges. These include the identification of novel and more efficient PAE hydrolases to address the complexity of PAE mixtures in the environment, understanding PAEs uptake mechanisms, characterizing novel <i>o</i>-phthalate degradation pathways, and studying the regulatory network that controls the expression of PAE degradation genes. Future research directions include mitigating the impact of PAEs on health and ecosystems, developing biosensors for monitoring and measuring bioavailable PAEs concentrations, and valorizing these residues into other products of industrial interest, among others.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451385/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engineering bacterial biocatalysts for the degradation of phthalic acid esters\",\"authors\":\"Gonzalo Durante-Rodríguez,&nbsp;Sofía de Francisco-Polanco,&nbsp;Unai Fernández-Arévalo,&nbsp;Eduardo Díaz\",\"doi\":\"10.1111/1751-7915.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phthalic acid esters (PAEs) are synthetic diesters derived from <i>o</i>-phthalic acid, commonly used as plasticizers. These compounds pose significant environmental and health risks due to their ability to leach into the environment and act as endocrine disruptors, carcinogens, and mutagens. Consequently, PAEs are now considered major emerging contaminants and priority pollutants. Microbial degradation, primarily by bacteria and fungi, offers a promising method for PAEs bioremediation. This article highlights the current state of microbial PAEs degradation, focusing on the major bottlenecks and associated challenges. These include the identification of novel and more efficient PAE hydrolases to address the complexity of PAE mixtures in the environment, understanding PAEs uptake mechanisms, characterizing novel <i>o</i>-phthalate degradation pathways, and studying the regulatory network that controls the expression of PAE degradation genes. Future research directions include mitigating the impact of PAEs on health and ecosystems, developing biosensors for monitoring and measuring bioavailable PAEs concentrations, and valorizing these residues into other products of industrial interest, among others.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451385/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

邻苯二甲酸酯(PAEs)是从邻苯二甲酸中提取的合成二酯,通常用作增塑剂。由于这些化合物能够渗入环境,并可作为内分泌干扰物、致癌物和诱变剂,因此对环境和健康构成重大风险。因此,PAE 现已被视为主要的新兴污染物和优先污染物。主要由细菌和真菌进行的微生物降解为 PAEs 的生物修复提供了一种前景广阔的方法。本文着重介绍了微生物降解 PAEs 的现状,重点关注主要瓶颈和相关挑战。这些挑战包括鉴定新型和更高效的 PAE 水解酶以应对环境中 PAE 混合物的复杂性、了解 PAEs 的吸收机制、鉴定新型邻苯二甲酸盐降解途径以及研究控制 PAE 降解基因表达的调控网络。未来的研究方向包括减轻 PAEs 对健康和生态系统的影响、开发用于监测和测量生物可利用 PAEs 浓度的生物传感器,以及将这些残留物转化为其他工业产品等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering bacterial biocatalysts for the degradation of phthalic acid esters

Engineering bacterial biocatalysts for the degradation of phthalic acid esters

Engineering bacterial biocatalysts for the degradation of phthalic acid esters

Phthalic acid esters (PAEs) are synthetic diesters derived from o-phthalic acid, commonly used as plasticizers. These compounds pose significant environmental and health risks due to their ability to leach into the environment and act as endocrine disruptors, carcinogens, and mutagens. Consequently, PAEs are now considered major emerging contaminants and priority pollutants. Microbial degradation, primarily by bacteria and fungi, offers a promising method for PAEs bioremediation. This article highlights the current state of microbial PAEs degradation, focusing on the major bottlenecks and associated challenges. These include the identification of novel and more efficient PAE hydrolases to address the complexity of PAE mixtures in the environment, understanding PAEs uptake mechanisms, characterizing novel o-phthalate degradation pathways, and studying the regulatory network that controls the expression of PAE degradation genes. Future research directions include mitigating the impact of PAEs on health and ecosystems, developing biosensors for monitoring and measuring bioavailable PAEs concentrations, and valorizing these residues into other products of industrial interest, among others.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信