通过脱溶效应和均匀的 Zn2+ 通量利用 ZnSn(OH)6 涂层层实现锌阳极的超长循环寿命

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-10-04 DOI:10.1002/smll.202405379
Yanhong Meng, Xinyu Bai, Hongming Chen, Busheng Zhang, Zijin Liu, Xinbo He, Dan Zhou
{"title":"通过脱溶效应和均匀的 Zn2+ 通量利用 ZnSn(OH)6 涂层层实现锌阳极的超长循环寿命","authors":"Yanhong Meng, Xinyu Bai, Hongming Chen, Busheng Zhang, Zijin Liu, Xinbo He, Dan Zhou","doi":"10.1002/smll.202405379","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous zinc-ion batteries (AZIBs) are considered as a promising energy storage system because of good safety, low cost, abundant resources, and environmental friendliness. However, the bottlenecks including dendrite growth, hydrogen evolution, and corrosion seriously limit their practical application. Herein, a novel ZnSn(OH)<sub>6</sub> coating layer with rich hydroxyl groups is employed to achieve highly stable Zn anode. The hydroxyl groups can feasibly interact with H<sub>2</sub>O molecules, contributing to the desolvation of hydrated Zn<sup>2+</sup> and the inhibition of side reactions on Zn anode surface. Furthermore, according to the DFT calculation, the adsorption energy of Zn<sup>2+</sup> among various sites on the surface of ZnSn(OH)<sub>6</sub> coating layer is relatively large, which helps the uniform distribution of Zn<sup>2+</sup> flux and the prevention of dendrite growth. Consequently, the ZnSn(OH)<sub>6</sub>@Zn anode delivers ultra-long cycle life (6770 h), low polarization voltage (27 mV), and high Coulombic efficiency (99.2% over 800 cycles) at 1 mA cm<sup>-2</sup>, 1 mAh cm<sup>-2</sup>. Besides, the assembled NaV<sub>3</sub>O<sub>8</sub>·xH<sub>2</sub>O//ZnSn(OH)<sub>6</sub>@Zn full cell can operate stably for 1500 cycles at 2 A g<sup>-1</sup> with a high specific capacity of 144.9 mAh g<sup>-1</sup>, demonstrating an excellent application potential. This simple and effective coating layer with high electrochemical performance provides an appealing strategy for the development of rechargeable AZIBs.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving Ultra-Long Cycle Life of Zn Anode Using ZnSn(OH)<sub>6</sub> Coating Layer via Desolvation Effect and Uniform Zn<sup>2+</sup> Flux.\",\"authors\":\"Yanhong Meng, Xinyu Bai, Hongming Chen, Busheng Zhang, Zijin Liu, Xinbo He, Dan Zhou\",\"doi\":\"10.1002/smll.202405379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aqueous zinc-ion batteries (AZIBs) are considered as a promising energy storage system because of good safety, low cost, abundant resources, and environmental friendliness. However, the bottlenecks including dendrite growth, hydrogen evolution, and corrosion seriously limit their practical application. Herein, a novel ZnSn(OH)<sub>6</sub> coating layer with rich hydroxyl groups is employed to achieve highly stable Zn anode. The hydroxyl groups can feasibly interact with H<sub>2</sub>O molecules, contributing to the desolvation of hydrated Zn<sup>2+</sup> and the inhibition of side reactions on Zn anode surface. Furthermore, according to the DFT calculation, the adsorption energy of Zn<sup>2+</sup> among various sites on the surface of ZnSn(OH)<sub>6</sub> coating layer is relatively large, which helps the uniform distribution of Zn<sup>2+</sup> flux and the prevention of dendrite growth. Consequently, the ZnSn(OH)<sub>6</sub>@Zn anode delivers ultra-long cycle life (6770 h), low polarization voltage (27 mV), and high Coulombic efficiency (99.2% over 800 cycles) at 1 mA cm<sup>-2</sup>, 1 mAh cm<sup>-2</sup>. Besides, the assembled NaV<sub>3</sub>O<sub>8</sub>·xH<sub>2</sub>O//ZnSn(OH)<sub>6</sub>@Zn full cell can operate stably for 1500 cycles at 2 A g<sup>-1</sup> with a high specific capacity of 144.9 mAh g<sup>-1</sup>, demonstrating an excellent application potential. This simple and effective coating layer with high electrochemical performance provides an appealing strategy for the development of rechargeable AZIBs.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202405379\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405379","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌离子水电池(AZIBs)具有安全性好、成本低、资源丰富和环境友好等优点,被认为是一种前景广阔的储能系统。然而,枝晶生长、氢演化和腐蚀等瓶颈问题严重限制了其实际应用。本文采用一种富含羟基的新型 ZnSn(OH)6 涂层来实现高稳定性的锌阳极。羟基可与 H2O 分子发生相互作用,有助于水合 Zn2+ 的脱溶和抑制 Zn 阳极表面的副反应。此外,根据 DFT 计算,ZnSn(OH)6 涂层表面各位点之间的 Zn2+ 吸附能相对较大,这有助于 Zn2+ 通量的均匀分布和防止枝晶的生长。因此,ZnSn(OH)6@Zn 阳极在 1 mA cm-2 和 1 mAh cm-2 的条件下,具有超长的循环寿命(6770 h)、低极化电压(27 mV)和高库仑效率(800 个循环中达到 99.2%)。此外,组装好的 NaV3O8-xH2O//ZnSn(OH)6@Zn 全电池可在 2 A g-1 的条件下稳定运行 1500 次,比容量高达 144.9 mAh g-1,显示了极佳的应用潜力。这种简单有效且具有高电化学性能的镀膜层为开发可充电 AZIB 提供了一种极具吸引力的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Achieving Ultra-Long Cycle Life of Zn Anode Using ZnSn(OH)<sub>6</sub> Coating Layer via Desolvation Effect and Uniform Zn<sup>2+</sup> Flux.

Achieving Ultra-Long Cycle Life of Zn Anode Using ZnSn(OH)6 Coating Layer via Desolvation Effect and Uniform Zn2+ Flux.

Aqueous zinc-ion batteries (AZIBs) are considered as a promising energy storage system because of good safety, low cost, abundant resources, and environmental friendliness. However, the bottlenecks including dendrite growth, hydrogen evolution, and corrosion seriously limit their practical application. Herein, a novel ZnSn(OH)6 coating layer with rich hydroxyl groups is employed to achieve highly stable Zn anode. The hydroxyl groups can feasibly interact with H2O molecules, contributing to the desolvation of hydrated Zn2+ and the inhibition of side reactions on Zn anode surface. Furthermore, according to the DFT calculation, the adsorption energy of Zn2+ among various sites on the surface of ZnSn(OH)6 coating layer is relatively large, which helps the uniform distribution of Zn2+ flux and the prevention of dendrite growth. Consequently, the ZnSn(OH)6@Zn anode delivers ultra-long cycle life (6770 h), low polarization voltage (27 mV), and high Coulombic efficiency (99.2% over 800 cycles) at 1 mA cm-2, 1 mAh cm-2. Besides, the assembled NaV3O8·xH2O//ZnSn(OH)6@Zn full cell can operate stably for 1500 cycles at 2 A g-1 with a high specific capacity of 144.9 mAh g-1, demonstrating an excellent application potential. This simple and effective coating layer with high electrochemical performance provides an appealing strategy for the development of rechargeable AZIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信