Aprotic 离子液体在空气中电化学还原 CO2 的机理研究。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-10-04 DOI:10.1002/cssc.202401832
Go Iijima, Kyosuke Sugiura, Kenichi Morishita, Hajime Shingai, Junichi Naruse, Atsushi Yamamoto, Yuki Fujita, Hiroaki Yoto
{"title":"Aprotic 离子液体在空气中电化学还原 CO2 的机理研究。","authors":"Go Iijima, Kyosuke Sugiura, Kenichi Morishita, Hajime Shingai, Junichi Naruse, Atsushi Yamamoto, Yuki Fujita, Hiroaki Yoto","doi":"10.1002/cssc.202401832","DOIUrl":null,"url":null,"abstract":"<p><p>The capture and electrochemical conversion of dilute CO2 in air is a promising approach to mitigate global warming. Aiming to increase the efficiency of the electrochemical reduction of CO2, we fabricated electrodes and developed a custom-designed sealed electrochemical reaction system to study the mechanism of this conversion. The performance of three metal electrodes, Ag, Cu, and SUS 316L, was compared in an aprotic ionic liquid as the electrolyte to monitor the CO2 concentration and chemical reactions using a CO2 sensor and diffuse reflectance infrared Fourier transform spectroscopy and Raman spectroscopy in CO2/N2 (400 ppm CO2 and 99.96% N2) or synthetic air (400 ppm CO2, 21% O2, and 79% N2). The CO2 concentration decreased at negative potentials and was more drastic in synthetic air than in CO2/N2. At negative potential in synthetic air, IR revealed carbon monoxide, carbonate, or peroxydicarbonate on the Ag, Cu, or SUS 316L electrodes, respectively. Reaction intermediates were identified using Raman spectroscopy. Superoxide (O2•-), produced by the reduction of O2 on each electrode, promotes the electrochemical reduction of CO2 whose reduction potential is higher on the negative side than that of O2. This research deepens our understanding of the electrochemical capture/release and conversion of dilute CO2.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Study of the Electrochemical Reduction of CO2 in Aprotic Ionic Liquid in Air.\",\"authors\":\"Go Iijima, Kyosuke Sugiura, Kenichi Morishita, Hajime Shingai, Junichi Naruse, Atsushi Yamamoto, Yuki Fujita, Hiroaki Yoto\",\"doi\":\"10.1002/cssc.202401832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The capture and electrochemical conversion of dilute CO2 in air is a promising approach to mitigate global warming. Aiming to increase the efficiency of the electrochemical reduction of CO2, we fabricated electrodes and developed a custom-designed sealed electrochemical reaction system to study the mechanism of this conversion. The performance of three metal electrodes, Ag, Cu, and SUS 316L, was compared in an aprotic ionic liquid as the electrolyte to monitor the CO2 concentration and chemical reactions using a CO2 sensor and diffuse reflectance infrared Fourier transform spectroscopy and Raman spectroscopy in CO2/N2 (400 ppm CO2 and 99.96% N2) or synthetic air (400 ppm CO2, 21% O2, and 79% N2). The CO2 concentration decreased at negative potentials and was more drastic in synthetic air than in CO2/N2. At negative potential in synthetic air, IR revealed carbon monoxide, carbonate, or peroxydicarbonate on the Ag, Cu, or SUS 316L electrodes, respectively. Reaction intermediates were identified using Raman spectroscopy. Superoxide (O2•-), produced by the reduction of O2 on each electrode, promotes the electrochemical reduction of CO2 whose reduction potential is higher on the negative side than that of O2. This research deepens our understanding of the electrochemical capture/release and conversion of dilute CO2.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401832\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401832","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

捕获和电化学转化空气中的稀释二氧化碳是减缓全球变暖的一种可行方法。为了提高二氧化碳的电化学还原效率,我们制作了电极并开发了一个定制设计的密封电化学反应系统,以研究这种转化的机理。我们比较了银电极、铜电极和 SUS 316L 三种金属电极在非沸腾离子液体电解质中的性能,在 CO2/N2(400 ppm CO2 和 99.96% N2)或合成空气(400 ppm CO2、21% O2 和 79% N2)中使用 CO2 传感器、漫反射红外傅立叶变换光谱和拉曼光谱监测 CO2 浓度和化学反应。负电位时,二氧化碳浓度下降,在合成空气中的下降幅度比 CO2/N2 中更大。在合成空气中的负电位下,红外光谱在 Ag、Cu 或 SUS 316L 电极上分别显示出一氧化碳、碳酸盐或过氧化二碳酸盐。使用拉曼光谱鉴定了反应中间产物。在每个电极上由 O2 还原产生的超氧化物(O2--)促进了 CO2 的电化学还原,而 CO2 在负极的还原电位高于 O2。这项研究加深了我们对稀释二氧化碳的电化学捕获/释放和转化的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic Study of the Electrochemical Reduction of CO2 in Aprotic Ionic Liquid in Air.

The capture and electrochemical conversion of dilute CO2 in air is a promising approach to mitigate global warming. Aiming to increase the efficiency of the electrochemical reduction of CO2, we fabricated electrodes and developed a custom-designed sealed electrochemical reaction system to study the mechanism of this conversion. The performance of three metal electrodes, Ag, Cu, and SUS 316L, was compared in an aprotic ionic liquid as the electrolyte to monitor the CO2 concentration and chemical reactions using a CO2 sensor and diffuse reflectance infrared Fourier transform spectroscopy and Raman spectroscopy in CO2/N2 (400 ppm CO2 and 99.96% N2) or synthetic air (400 ppm CO2, 21% O2, and 79% N2). The CO2 concentration decreased at negative potentials and was more drastic in synthetic air than in CO2/N2. At negative potential in synthetic air, IR revealed carbon monoxide, carbonate, or peroxydicarbonate on the Ag, Cu, or SUS 316L electrodes, respectively. Reaction intermediates were identified using Raman spectroscopy. Superoxide (O2•-), produced by the reduction of O2 on each electrode, promotes the electrochemical reduction of CO2 whose reduction potential is higher on the negative side than that of O2. This research deepens our understanding of the electrochemical capture/release and conversion of dilute CO2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信