{"title":"多功能免疫蛋白酶体活性探针的合成与应用","authors":"Saayak Halder, Cody A Loy, Darci J Trader","doi":"10.1002/cbic.202400571","DOIUrl":null,"url":null,"abstract":"<p><p>The immunoproteasome (iCP) has gained significant interest in recent years as it has been discovered to be significantly expressed under inflammatory conditions, as well as playing significant roles in several diseases, such as autoimmune disorders, viral infection, and cancer. Selective inhibitors have been generated as a method to overcome the off-target effects of current proteasome inhibitor therapeutics. However, selective probes that allow for monitoring this protein complex remain limited, hindering our understanding of the iCP. Current probes are non-selective, not commercially available, or require difficult synthesis. Here, we describe the modular synthesis and application of an iCP-selective probe. The modular nature of the synthetic strategy can enable the incorporation of different fluorophores and covalent warheads, demonstrating the versatility of this probe.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Application of a Versatile Immunoproteasome Activity Probe.\",\"authors\":\"Saayak Halder, Cody A Loy, Darci J Trader\",\"doi\":\"10.1002/cbic.202400571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The immunoproteasome (iCP) has gained significant interest in recent years as it has been discovered to be significantly expressed under inflammatory conditions, as well as playing significant roles in several diseases, such as autoimmune disorders, viral infection, and cancer. Selective inhibitors have been generated as a method to overcome the off-target effects of current proteasome inhibitor therapeutics. However, selective probes that allow for monitoring this protein complex remain limited, hindering our understanding of the iCP. Current probes are non-selective, not commercially available, or require difficult synthesis. Here, we describe the modular synthesis and application of an iCP-selective probe. The modular nature of the synthetic strategy can enable the incorporation of different fluorophores and covalent warheads, demonstrating the versatility of this probe.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202400571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Synthesis and Application of a Versatile Immunoproteasome Activity Probe.
The immunoproteasome (iCP) has gained significant interest in recent years as it has been discovered to be significantly expressed under inflammatory conditions, as well as playing significant roles in several diseases, such as autoimmune disorders, viral infection, and cancer. Selective inhibitors have been generated as a method to overcome the off-target effects of current proteasome inhibitor therapeutics. However, selective probes that allow for monitoring this protein complex remain limited, hindering our understanding of the iCP. Current probes are non-selective, not commercially available, or require difficult synthesis. Here, we describe the modular synthesis and application of an iCP-selective probe. The modular nature of the synthetic strategy can enable the incorporation of different fluorophores and covalent warheads, demonstrating the versatility of this probe.