Yin Zheng, Tilong Yang, Ka Fai Chan, Zhenyang Lin, Zhongxing Huang
{"title":"钴催化的丙二腈对映体选择性硼氢化还原脱对称反应","authors":"Yin Zheng, Tilong Yang, Ka Fai Chan, Zhenyang Lin, Zhongxing Huang","doi":"10.1038/s41557-024-01592-z","DOIUrl":null,"url":null,"abstract":"The high nitrogen content and diverse reactivity of malononitrile are widely harnessed to access nitrogen-rich fine chemicals. Although the facile substitutions of malononitrile can give structurally diverse quaternary carbons, their access to enantioenriched molecules, particularly chiral amines that are prevalent in bioactive compounds, remains rare. Here we report a cobalt-catalysed desymmetric reduction of disubstituted malononitriles to give highly functionalized β-quaternary amines. The pair of cobalt salt and sodium borohydride is proposed to generate a cobalt-hydride intermediate and initiate the reduction. Meanwhile, the enantiocontrol of the dinitrile is achieved through a tailored bisoxazoline ligand with two large flanks that create a narrow gap to host the bystanding nitrile and thus restrict the C(ipso)−C(α) bond rotation of the complexed one. Combined with the extensive derivatization possibilities of all substituents on the quaternary carbon, this asymmetric reduction unlocks pathways from malononitrile as a bulk chemical feedstock to intricate, chiral nitrogen-containing molecules. Malononitriles are widely used precursors for the synthesis of diverse enantioenriched nitrogen-containing molecules, but controlling the stereochemistry of their asymmetric transformations is challenging. Now, the desymmetric reduction of disubstituted malononitriles to chiral amines has been achieved, enabled by a bidentate ligand with extended flanks that can differentiate between the precursor’s nitrile groups through tailored steric pairings.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"16 11","pages":"1845-1854"},"PeriodicalIF":19.2000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cobalt-catalysed desymmetrization of malononitriles via enantioselective borohydride reduction\",\"authors\":\"Yin Zheng, Tilong Yang, Ka Fai Chan, Zhenyang Lin, Zhongxing Huang\",\"doi\":\"10.1038/s41557-024-01592-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high nitrogen content and diverse reactivity of malononitrile are widely harnessed to access nitrogen-rich fine chemicals. Although the facile substitutions of malononitrile can give structurally diverse quaternary carbons, their access to enantioenriched molecules, particularly chiral amines that are prevalent in bioactive compounds, remains rare. Here we report a cobalt-catalysed desymmetric reduction of disubstituted malononitriles to give highly functionalized β-quaternary amines. The pair of cobalt salt and sodium borohydride is proposed to generate a cobalt-hydride intermediate and initiate the reduction. Meanwhile, the enantiocontrol of the dinitrile is achieved through a tailored bisoxazoline ligand with two large flanks that create a narrow gap to host the bystanding nitrile and thus restrict the C(ipso)−C(α) bond rotation of the complexed one. Combined with the extensive derivatization possibilities of all substituents on the quaternary carbon, this asymmetric reduction unlocks pathways from malononitrile as a bulk chemical feedstock to intricate, chiral nitrogen-containing molecules. Malononitriles are widely used precursors for the synthesis of diverse enantioenriched nitrogen-containing molecules, but controlling the stereochemistry of their asymmetric transformations is challenging. Now, the desymmetric reduction of disubstituted malononitriles to chiral amines has been achieved, enabled by a bidentate ligand with extended flanks that can differentiate between the precursor’s nitrile groups through tailored steric pairings.\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\"16 11\",\"pages\":\"1845-1854\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41557-024-01592-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41557-024-01592-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cobalt-catalysed desymmetrization of malononitriles via enantioselective borohydride reduction
The high nitrogen content and diverse reactivity of malononitrile are widely harnessed to access nitrogen-rich fine chemicals. Although the facile substitutions of malononitrile can give structurally diverse quaternary carbons, their access to enantioenriched molecules, particularly chiral amines that are prevalent in bioactive compounds, remains rare. Here we report a cobalt-catalysed desymmetric reduction of disubstituted malononitriles to give highly functionalized β-quaternary amines. The pair of cobalt salt and sodium borohydride is proposed to generate a cobalt-hydride intermediate and initiate the reduction. Meanwhile, the enantiocontrol of the dinitrile is achieved through a tailored bisoxazoline ligand with two large flanks that create a narrow gap to host the bystanding nitrile and thus restrict the C(ipso)−C(α) bond rotation of the complexed one. Combined with the extensive derivatization possibilities of all substituents on the quaternary carbon, this asymmetric reduction unlocks pathways from malononitrile as a bulk chemical feedstock to intricate, chiral nitrogen-containing molecules. Malononitriles are widely used precursors for the synthesis of diverse enantioenriched nitrogen-containing molecules, but controlling the stereochemistry of their asymmetric transformations is challenging. Now, the desymmetric reduction of disubstituted malononitriles to chiral amines has been achieved, enabled by a bidentate ligand with extended flanks that can differentiate between the precursor’s nitrile groups through tailored steric pairings.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.