在改良晶体结构的 Cu3PS4 电催化剂上进行规模化氨合成

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Mokyeon Cho, Hyungkuk Ju, Sooan Bae, Sungyool Bong, Jaeyoung Lee
{"title":"在改良晶体结构的 Cu3PS4 电催化剂上进行规模化氨合成","authors":"Mokyeon Cho, Hyungkuk Ju, Sooan Bae, Sungyool Bong, Jaeyoung Lee","doi":"10.1016/j.electacta.2024.145166","DOIUrl":null,"url":null,"abstract":"Ammonia production, which is vital for agricultural and industrial applications, typically relies on energy-intensive processes that contribute to global CO<sub>2</sub> emissions. Electrochemical nitrogen reduction is a promising alternative, although it faces challenges such as low yield and selectivity. Transition-metal-based catalysts, particularly Cu, are promising for overcoming these limitations. Cu<sub>3</sub>PS<sub>4</sub> catalysts were synthesized and evaluated using a 9 cm<sup>2</sup>-scale electrode, revealing enhanced performance attributed to change in the crystal and electronic structure of Cu, facilitating N<sub>2</sub> adsorption and improving the reaction activity. Notably, the ammonia synthesis rate reached 128 μg h<sup>-1</sup> mg<sub>cat</sub><sup>-1</sup> at -1.0 V vs. RHE and faradaic efficiency was 34% at -0.8 V vs. RHE. These findings provide potential insights into the improvement of practical electrochemical synthesis of ammonia.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable ammonia synthesis on the modified crystal structure of Cu3PS4 electrocatalyst\",\"authors\":\"Mokyeon Cho, Hyungkuk Ju, Sooan Bae, Sungyool Bong, Jaeyoung Lee\",\"doi\":\"10.1016/j.electacta.2024.145166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ammonia production, which is vital for agricultural and industrial applications, typically relies on energy-intensive processes that contribute to global CO<sub>2</sub> emissions. Electrochemical nitrogen reduction is a promising alternative, although it faces challenges such as low yield and selectivity. Transition-metal-based catalysts, particularly Cu, are promising for overcoming these limitations. Cu<sub>3</sub>PS<sub>4</sub> catalysts were synthesized and evaluated using a 9 cm<sup>2</sup>-scale electrode, revealing enhanced performance attributed to change in the crystal and electronic structure of Cu, facilitating N<sub>2</sub> adsorption and improving the reaction activity. Notably, the ammonia synthesis rate reached 128 μg h<sup>-1</sup> mg<sub>cat</sub><sup>-1</sup> at -1.0 V vs. RHE and faradaic efficiency was 34% at -0.8 V vs. RHE. These findings provide potential insights into the improvement of practical electrochemical synthesis of ammonia.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2024.145166\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145166","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

氨的生产对农业和工业应用至关重要,但通常依赖于能源密集型工艺,从而导致全球二氧化碳排放量增加。电化学氮还原是一种很有前景的替代方法,但它面临着产量低和选择性差等挑战。过渡金属催化剂,尤其是铜催化剂,有望克服这些限制。我们合成了 Cu3PS4 催化剂,并使用 9 cm2 大小的电极对其进行了评估,结果表明,由于 Cu 晶体和电子结构的变化,其性能得到了增强,从而促进了 N2 的吸附并提高了反应活性。值得注意的是,在-1.0 V(相对于 RHE)电压下,氨合成率达到 128 μg h-1 mgcat-1,在-0.8 V(相对于 RHE)电压下,远红外效率为 34%。这些发现为改进氨的实际电化学合成提供了潜在的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable ammonia synthesis on the modified crystal structure of Cu3PS4 electrocatalyst
Ammonia production, which is vital for agricultural and industrial applications, typically relies on energy-intensive processes that contribute to global CO2 emissions. Electrochemical nitrogen reduction is a promising alternative, although it faces challenges such as low yield and selectivity. Transition-metal-based catalysts, particularly Cu, are promising for overcoming these limitations. Cu3PS4 catalysts were synthesized and evaluated using a 9 cm2-scale electrode, revealing enhanced performance attributed to change in the crystal and electronic structure of Cu, facilitating N2 adsorption and improving the reaction activity. Notably, the ammonia synthesis rate reached 128 μg h-1 mgcat-1 at -1.0 V vs. RHE and faradaic efficiency was 34% at -0.8 V vs. RHE. These findings provide potential insights into the improvement of practical electrochemical synthesis of ammonia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信