Guitao Luo , Muyu Liu , Hua Li , Yang Liu , Hongbo Tan , Qimin Liu
{"title":"在通过添加葡萄糖酸钠延缓 C3S 水化方面,吸附作用与络合作用相比具有重要意义","authors":"Guitao Luo , Muyu Liu , Hua Li , Yang Liu , Hongbo Tan , Qimin Liu","doi":"10.1016/j.cemconres.2024.107686","DOIUrl":null,"url":null,"abstract":"<div><div>Adsorption effect on particle surfaces and complexation effect with free Ca<sup>2+</sup> mostly determine the retarding performance of organic admixtures on cement hydration. However, it is difficult to identify which effect plays a more important role in retarding hydration by experimental methods. Here, a theoretical model was developed to investigate the retarding mechanisms of sodium gluconate (SG) on hydration of tricalcium silicate (C<sub>3</sub>S). Based on obstruction theory and complexation reaction kinetics, effects of adsorption and complexation were simulated to examine the retarding performance of C<sub>3</sub>S hydration with addition of SG. The proposed model well predicted the effect of additional dosing of SG on the retarding performance of C<sub>3</sub>S hydration. Theoretical parameter studies demonstrated that adsorption ratio contributed much largely to the delays in C<sub>3</sub>S hydration, compared with rate constant of complex generation. Therefore, it is confirmed that adsorption plays a more important role in regulating the retarding mechanism of C<sub>3</sub>S hydration.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"186 ","pages":"Article 107686"},"PeriodicalIF":10.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Importance of adsorption compared with complexation for retarding C3S hydration via adding sodium gluconate\",\"authors\":\"Guitao Luo , Muyu Liu , Hua Li , Yang Liu , Hongbo Tan , Qimin Liu\",\"doi\":\"10.1016/j.cemconres.2024.107686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Adsorption effect on particle surfaces and complexation effect with free Ca<sup>2+</sup> mostly determine the retarding performance of organic admixtures on cement hydration. However, it is difficult to identify which effect plays a more important role in retarding hydration by experimental methods. Here, a theoretical model was developed to investigate the retarding mechanisms of sodium gluconate (SG) on hydration of tricalcium silicate (C<sub>3</sub>S). Based on obstruction theory and complexation reaction kinetics, effects of adsorption and complexation were simulated to examine the retarding performance of C<sub>3</sub>S hydration with addition of SG. The proposed model well predicted the effect of additional dosing of SG on the retarding performance of C<sub>3</sub>S hydration. Theoretical parameter studies demonstrated that adsorption ratio contributed much largely to the delays in C<sub>3</sub>S hydration, compared with rate constant of complex generation. Therefore, it is confirmed that adsorption plays a more important role in regulating the retarding mechanism of C<sub>3</sub>S hydration.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"186 \",\"pages\":\"Article 107686\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624002679\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002679","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Importance of adsorption compared with complexation for retarding C3S hydration via adding sodium gluconate
Adsorption effect on particle surfaces and complexation effect with free Ca2+ mostly determine the retarding performance of organic admixtures on cement hydration. However, it is difficult to identify which effect plays a more important role in retarding hydration by experimental methods. Here, a theoretical model was developed to investigate the retarding mechanisms of sodium gluconate (SG) on hydration of tricalcium silicate (C3S). Based on obstruction theory and complexation reaction kinetics, effects of adsorption and complexation were simulated to examine the retarding performance of C3S hydration with addition of SG. The proposed model well predicted the effect of additional dosing of SG on the retarding performance of C3S hydration. Theoretical parameter studies demonstrated that adsorption ratio contributed much largely to the delays in C3S hydration, compared with rate constant of complex generation. Therefore, it is confirmed that adsorption plays a more important role in regulating the retarding mechanism of C3S hydration.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.