热激活延迟荧光聚合物及其在有机发光二极管中的应用

IF 26 1区 化学 Q1 POLYMER SCIENCE
Tao Wang , Yanxiang Cheng , Chuluo Yang
{"title":"热激活延迟荧光聚合物及其在有机发光二极管中的应用","authors":"Tao Wang ,&nbsp;Yanxiang Cheng ,&nbsp;Chuluo Yang","doi":"10.1016/j.progpolymsci.2024.101892","DOIUrl":null,"url":null,"abstract":"<div><div>Benefitting from the good mechanical and thermal stability, as well as compatibility with flexible substrate and large-scale preparation, polymers with thermally activated delayed fluorescence (TADF) polymers show great potential for application in the fields of organic light-emitting diodes (OLEDs). In this review, we firstly introduce the mechanism of TADF materials and discuss the underlying design principles for TADF polymers. Next, we survey strategies and relevant studies pertaining to the construction of TADF polymers. Subsequently, we offer a comprehensive summary of the characteristics and the suitable application scopes for each strategy, specifically focusing on emitting color. Finally, the remaining challenges in this field are proposed in conclusion section.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"158 ","pages":"Article 101892"},"PeriodicalIF":26.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermally activated delayed fluorescence polymers and their application in organic light-emitting diodes\",\"authors\":\"Tao Wang ,&nbsp;Yanxiang Cheng ,&nbsp;Chuluo Yang\",\"doi\":\"10.1016/j.progpolymsci.2024.101892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Benefitting from the good mechanical and thermal stability, as well as compatibility with flexible substrate and large-scale preparation, polymers with thermally activated delayed fluorescence (TADF) polymers show great potential for application in the fields of organic light-emitting diodes (OLEDs). In this review, we firstly introduce the mechanism of TADF materials and discuss the underlying design principles for TADF polymers. Next, we survey strategies and relevant studies pertaining to the construction of TADF polymers. Subsequently, we offer a comprehensive summary of the characteristics and the suitable application scopes for each strategy, specifically focusing on emitting color. Finally, the remaining challenges in this field are proposed in conclusion section.</div></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"158 \",\"pages\":\"Article 101892\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670024001096\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670024001096","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

热激活延迟荧光(TADF)聚合物具有良好的机械稳定性和热稳定性,并且与柔性基底和大规模制备兼容,因此在有机发光二极管(OLED)领域具有巨大的应用潜力。在本综述中,我们首先介绍了 TADF 材料的机理,并讨论了 TADF 聚合物的基本设计原理。接下来,我们将对构建 TADF 聚合物的策略和相关研究进行调查。随后,我们全面总结了每种策略的特点和适合的应用范围,特别是在发光颜色方面。最后,我们在结论部分提出了这一领域仍面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermally activated delayed fluorescence polymers and their application in organic light-emitting diodes

Thermally activated delayed fluorescence polymers and their application in organic light-emitting diodes

Thermally activated delayed fluorescence polymers and their application in organic light-emitting diodes
Benefitting from the good mechanical and thermal stability, as well as compatibility with flexible substrate and large-scale preparation, polymers with thermally activated delayed fluorescence (TADF) polymers show great potential for application in the fields of organic light-emitting diodes (OLEDs). In this review, we firstly introduce the mechanism of TADF materials and discuss the underlying design principles for TADF polymers. Next, we survey strategies and relevant studies pertaining to the construction of TADF polymers. Subsequently, we offer a comprehensive summary of the characteristics and the suitable application scopes for each strategy, specifically focusing on emitting color. Finally, the remaining challenges in this field are proposed in conclusion section.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Polymer Science
Progress in Polymer Science 化学-高分子科学
CiteScore
48.70
自引率
1.10%
发文量
54
审稿时长
38 days
期刊介绍: Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field. The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field. The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信