Chantelle A. Burton, Douglas I. Kelley, Eleanor Burke, Camilla Mathison, Chris D. Jones, Richard A. Betts, Eddy Robertson, João C. M. Teixeira, Manoel Cardoso, Liana O. Anderson
{"title":"火灾削弱了 1.5 °C 前的陆地碳汇","authors":"Chantelle A. Burton, Douglas I. Kelley, Eleanor Burke, Camilla Mathison, Chris D. Jones, Richard A. Betts, Eddy Robertson, João C. M. Teixeira, Manoel Cardoso, Liana O. Anderson","doi":"10.1038/s41561-024-01554-7","DOIUrl":null,"url":null,"abstract":"To avoid the worst impacts of climate change, the Paris Agreement committed countries to pursue efforts to limit global warming to 1.5 °C by urgently reducing greenhouse gas emissions. However, the Paris temperature ambitions and remaining carbon budgets mostly use models that lack feedback among fire, vegetation and carbon, which are essential for understanding the future resilience of ecosystems. Here we use a coupled fire–vegetation model to explore regional impacts and feedbacks across global warming levels. We address whether the 1.5 °C goal is consistent with avoiding significant ecosystem changes when considering shifts in fire regimes. We find that the global warming level at which fire began to impact global carbon storage significantly was 1.07 °C (0.8–1.34 °C) above pre-industrial levels and conclude that fire is already playing a major role in decreasing the effectiveness of land carbon sinks. We estimate that considering fire reduces the remaining carbon budget by 25 Gt CO2 (~5%) for limiting temperature rise to 1.5 °C and 64 GtCO2 (~5%) for 2.0 °C compared to previous estimates. Whereas limiting warming to 1.5 °C is still essential for avoiding the worst impacts of climate change, in many cases, we are already reaching the point of significant change in ecosystems rich in carbon and biodiversity. Only about 1.07 °C of climate warming above the pre-industrial level is required for fire to substantially diminish the effectiveness of global carbon sinks, suggesting that climate change has already been weakening carbon storage through fire, according to integrated model simulations that consider the interaction between fire and vegetation.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 11","pages":"1108-1114"},"PeriodicalIF":15.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41561-024-01554-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Fire weakens land carbon sinks before 1.5 °C\",\"authors\":\"Chantelle A. Burton, Douglas I. Kelley, Eleanor Burke, Camilla Mathison, Chris D. Jones, Richard A. Betts, Eddy Robertson, João C. M. Teixeira, Manoel Cardoso, Liana O. Anderson\",\"doi\":\"10.1038/s41561-024-01554-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To avoid the worst impacts of climate change, the Paris Agreement committed countries to pursue efforts to limit global warming to 1.5 °C by urgently reducing greenhouse gas emissions. However, the Paris temperature ambitions and remaining carbon budgets mostly use models that lack feedback among fire, vegetation and carbon, which are essential for understanding the future resilience of ecosystems. Here we use a coupled fire–vegetation model to explore regional impacts and feedbacks across global warming levels. We address whether the 1.5 °C goal is consistent with avoiding significant ecosystem changes when considering shifts in fire regimes. We find that the global warming level at which fire began to impact global carbon storage significantly was 1.07 °C (0.8–1.34 °C) above pre-industrial levels and conclude that fire is already playing a major role in decreasing the effectiveness of land carbon sinks. We estimate that considering fire reduces the remaining carbon budget by 25 Gt CO2 (~5%) for limiting temperature rise to 1.5 °C and 64 GtCO2 (~5%) for 2.0 °C compared to previous estimates. Whereas limiting warming to 1.5 °C is still essential for avoiding the worst impacts of climate change, in many cases, we are already reaching the point of significant change in ecosystems rich in carbon and biodiversity. Only about 1.07 °C of climate warming above the pre-industrial level is required for fire to substantially diminish the effectiveness of global carbon sinks, suggesting that climate change has already been weakening carbon storage through fire, according to integrated model simulations that consider the interaction between fire and vegetation.\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"17 11\",\"pages\":\"1108-1114\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41561-024-01554-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41561-024-01554-7\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01554-7","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
To avoid the worst impacts of climate change, the Paris Agreement committed countries to pursue efforts to limit global warming to 1.5 °C by urgently reducing greenhouse gas emissions. However, the Paris temperature ambitions and remaining carbon budgets mostly use models that lack feedback among fire, vegetation and carbon, which are essential for understanding the future resilience of ecosystems. Here we use a coupled fire–vegetation model to explore regional impacts and feedbacks across global warming levels. We address whether the 1.5 °C goal is consistent with avoiding significant ecosystem changes when considering shifts in fire regimes. We find that the global warming level at which fire began to impact global carbon storage significantly was 1.07 °C (0.8–1.34 °C) above pre-industrial levels and conclude that fire is already playing a major role in decreasing the effectiveness of land carbon sinks. We estimate that considering fire reduces the remaining carbon budget by 25 Gt CO2 (~5%) for limiting temperature rise to 1.5 °C and 64 GtCO2 (~5%) for 2.0 °C compared to previous estimates. Whereas limiting warming to 1.5 °C is still essential for avoiding the worst impacts of climate change, in many cases, we are already reaching the point of significant change in ecosystems rich in carbon and biodiversity. Only about 1.07 °C of climate warming above the pre-industrial level is required for fire to substantially diminish the effectiveness of global carbon sinks, suggesting that climate change has already been weakening carbon storage through fire, according to integrated model simulations that consider the interaction between fire and vegetation.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.