Inês Catarina Gomes Espada, Noelia González-Ballesteros, Carlos J. Tavares, Senentxu Lanceros-Méndez and Pedro M. Martins
{"title":"基于芦丁的绿色可见光范围活性光催化 Au/TiO2 纳米复合材料的合成及其在降解环丙沙星中的应用†。","authors":"Inês Catarina Gomes Espada, Noelia González-Ballesteros, Carlos J. Tavares, Senentxu Lanceros-Méndez and Pedro M. Martins","doi":"10.1039/D4SU00186A","DOIUrl":null,"url":null,"abstract":"<p >Photocatalysis is a low-cost solution to efficiently remove resilient emergent pollutants from wastewater with complex chemical structures, such as pharmaceuticals. Titanium dioxide (TiO<small><sub>2</sub></small>) is the most studied photocatalyst and is usually functionalised with gold (Au) nanoparticles to prevent electron–hole pair recombination and extend visible radiation absorption. However, conventional synthesis techniques use toxic chemicals and present high energy consumption. The focus of this work is to present and optimize a green synthesis method using the flavonoid rutin – a natural compound found in various plants – as the reducing agent at room temperature to decrease the environmental impact and optimise the chemical, physical, and photocatalytic properties of Au/TiO<small><sub>2</sub></small> nanoparticles with concentrations of Au of 0.025, 0.1, and 1 wt%. Through ciprofloxacin (CIP) degradation under UV and simulated solar radiation, enhanced photocatalytic efficiency is observed due to adding Au nanoparticles, proving that rutin is a suitable reducing agent for green nanoparticle synthesis.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 3090-3099"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00186a?page=search","citationCount":"0","resultStr":"{\"title\":\"Towards green visible range active photocatalytic Au/TiO2 nanocomposites through rutin-based synthesis and their application in the degradation of ciprofloxacin†\",\"authors\":\"Inês Catarina Gomes Espada, Noelia González-Ballesteros, Carlos J. Tavares, Senentxu Lanceros-Méndez and Pedro M. Martins\",\"doi\":\"10.1039/D4SU00186A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photocatalysis is a low-cost solution to efficiently remove resilient emergent pollutants from wastewater with complex chemical structures, such as pharmaceuticals. Titanium dioxide (TiO<small><sub>2</sub></small>) is the most studied photocatalyst and is usually functionalised with gold (Au) nanoparticles to prevent electron–hole pair recombination and extend visible radiation absorption. However, conventional synthesis techniques use toxic chemicals and present high energy consumption. The focus of this work is to present and optimize a green synthesis method using the flavonoid rutin – a natural compound found in various plants – as the reducing agent at room temperature to decrease the environmental impact and optimise the chemical, physical, and photocatalytic properties of Au/TiO<small><sub>2</sub></small> nanoparticles with concentrations of Au of 0.025, 0.1, and 1 wt%. Through ciprofloxacin (CIP) degradation under UV and simulated solar radiation, enhanced photocatalytic efficiency is observed due to adding Au nanoparticles, proving that rutin is a suitable reducing agent for green nanoparticle synthesis.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 10\",\"pages\":\" 3090-3099\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00186a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00186a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00186a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards green visible range active photocatalytic Au/TiO2 nanocomposites through rutin-based synthesis and their application in the degradation of ciprofloxacin†
Photocatalysis is a low-cost solution to efficiently remove resilient emergent pollutants from wastewater with complex chemical structures, such as pharmaceuticals. Titanium dioxide (TiO2) is the most studied photocatalyst and is usually functionalised with gold (Au) nanoparticles to prevent electron–hole pair recombination and extend visible radiation absorption. However, conventional synthesis techniques use toxic chemicals and present high energy consumption. The focus of this work is to present and optimize a green synthesis method using the flavonoid rutin – a natural compound found in various plants – as the reducing agent at room temperature to decrease the environmental impact and optimise the chemical, physical, and photocatalytic properties of Au/TiO2 nanoparticles with concentrations of Au of 0.025, 0.1, and 1 wt%. Through ciprofloxacin (CIP) degradation under UV and simulated solar radiation, enhanced photocatalytic efficiency is observed due to adding Au nanoparticles, proving that rutin is a suitable reducing agent for green nanoparticle synthesis.