DGTD 方法中科尔-科尔色散介质的完美匹配层

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xuebin Qin;Xuan Wu;Shuo Wang;Xiaoying Zhao;Yuanguo Zhou;Qiang Ren
{"title":"DGTD 方法中科尔-科尔色散介质的完美匹配层","authors":"Xuebin Qin;Xuan Wu;Shuo Wang;Xiaoying Zhao;Yuanguo Zhou;Qiang Ren","doi":"10.1109/JMMCT.2024.3462529","DOIUrl":null,"url":null,"abstract":"Simulating electromagnetic waves within biological tissues is critical for assessing electromagnetic effects in biological environment. Precise modeling of biological tissues in computational electromagnetics is therefore necessary. The Cole-Cole dispersive model based on the fractional power functions can more accurately describe the electrical characteristics of biological tissues in a wide frequency range than the typical dispersive model based on the integer power functions. Previous research on the time-domain simulation of the Cole-Cole medium is mainly based on the finite difference time domain (FDTD) method. Recently, researchers proposed a DEH scheme (Maxwell's equations with field variables D, E and H) discontinuous Galerkin time domain (DGTD) method to simulate wave propagation in the Cole-Cole dispersive media. However, it lacks the perfectly matched layer (PML) to truncate the Cole-Cole background media. This paper fills this gap by developing a PML for Cole-Cole background media in the DGTD method.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perfectly Matched Layer for Cole–Cole Dispersive Media in DGTD Method\",\"authors\":\"Xuebin Qin;Xuan Wu;Shuo Wang;Xiaoying Zhao;Yuanguo Zhou;Qiang Ren\",\"doi\":\"10.1109/JMMCT.2024.3462529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulating electromagnetic waves within biological tissues is critical for assessing electromagnetic effects in biological environment. Precise modeling of biological tissues in computational electromagnetics is therefore necessary. The Cole-Cole dispersive model based on the fractional power functions can more accurately describe the electrical characteristics of biological tissues in a wide frequency range than the typical dispersive model based on the integer power functions. Previous research on the time-domain simulation of the Cole-Cole medium is mainly based on the finite difference time domain (FDTD) method. Recently, researchers proposed a DEH scheme (Maxwell's equations with field variables D, E and H) discontinuous Galerkin time domain (DGTD) method to simulate wave propagation in the Cole-Cole dispersive media. However, it lacks the perfectly matched layer (PML) to truncate the Cole-Cole background media. This paper fills this gap by developing a PML for Cole-Cole background media in the DGTD method.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681534/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10681534/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

模拟生物组织内的电磁波对于评估生物环境中的电磁效应至关重要。因此,有必要在计算电磁学中对生物组织进行精确建模。与基于整数幂函数的典型色散模型相比,基于分数幂函数的 Cole-Cole 色散模型能更准确地描述生物组织在宽频率范围内的电特性。以往对 Cole-Cole 介质的时域模拟研究主要基于有限差分时域(FDTD)方法。最近,研究人员提出了一种 DEH 方案(带有场变量 D、E 和 H 的麦克斯韦方程)非连续伽勒金时域(DGTD)方法来模拟 Cole-Cole 色散介质中的波传播。然而,该方法缺乏完美匹配层(PML)来截断科尔-科尔背景介质。本文通过在 DGTD 方法中开发科尔-科尔背景介质的 PML,填补了这一空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perfectly Matched Layer for Cole–Cole Dispersive Media in DGTD Method
Simulating electromagnetic waves within biological tissues is critical for assessing electromagnetic effects in biological environment. Precise modeling of biological tissues in computational electromagnetics is therefore necessary. The Cole-Cole dispersive model based on the fractional power functions can more accurately describe the electrical characteristics of biological tissues in a wide frequency range than the typical dispersive model based on the integer power functions. Previous research on the time-domain simulation of the Cole-Cole medium is mainly based on the finite difference time domain (FDTD) method. Recently, researchers proposed a DEH scheme (Maxwell's equations with field variables D, E and H) discontinuous Galerkin time domain (DGTD) method to simulate wave propagation in the Cole-Cole dispersive media. However, it lacks the perfectly matched layer (PML) to truncate the Cole-Cole background media. This paper fills this gap by developing a PML for Cole-Cole background media in the DGTD method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信