{"title":"用于检测水溶液中 Hg²+ 离子的蚀刻 FBG 型光纤传感器","authors":"Sunil Mohan;Nagendra Kumar","doi":"10.1109/LPT.2024.3463879","DOIUrl":null,"url":null,"abstract":"This letter demonstrates an optical fiber sensor employing chitosan-caped gold nanoparticle (Au-NPs) coated on etched FBG (EFBG) for the label-free detection of Hg2+ in an aqueous solution. The Bragg wavelength of proposed optical fiber is monitored at different Hg2+ concentrations in water for the experimental investigation of sensor characteristics. The sensor responds linearly over a range of 1–10 ppb mercury concentration, with a sensitivity of 101.7pm/ppb. The limit of detection (LOD) of the proposed sensor is 0.07 ppb, well within the World Health Organization’s (WHO) acceptable limit of 2 ppb for safe drinking water.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 21","pages":"1289-1292"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Etched FBG-Based Optical Fiber Sensor for Hg²+ Ion Detection in Aqueous Solution\",\"authors\":\"Sunil Mohan;Nagendra Kumar\",\"doi\":\"10.1109/LPT.2024.3463879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter demonstrates an optical fiber sensor employing chitosan-caped gold nanoparticle (Au-NPs) coated on etched FBG (EFBG) for the label-free detection of Hg2+ in an aqueous solution. The Bragg wavelength of proposed optical fiber is monitored at different Hg2+ concentrations in water for the experimental investigation of sensor characteristics. The sensor responds linearly over a range of 1–10 ppb mercury concentration, with a sensitivity of 101.7pm/ppb. The limit of detection (LOD) of the proposed sensor is 0.07 ppb, well within the World Health Organization’s (WHO) acceptable limit of 2 ppb for safe drinking water.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"36 21\",\"pages\":\"1289-1292\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684231/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10684231/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Etched FBG-Based Optical Fiber Sensor for Hg²+ Ion Detection in Aqueous Solution
This letter demonstrates an optical fiber sensor employing chitosan-caped gold nanoparticle (Au-NPs) coated on etched FBG (EFBG) for the label-free detection of Hg2+ in an aqueous solution. The Bragg wavelength of proposed optical fiber is monitored at different Hg2+ concentrations in water for the experimental investigation of sensor characteristics. The sensor responds linearly over a range of 1–10 ppb mercury concentration, with a sensitivity of 101.7pm/ppb. The limit of detection (LOD) of the proposed sensor is 0.07 ppb, well within the World Health Organization’s (WHO) acceptable limit of 2 ppb for safe drinking water.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.