{"title":"高灵敏度、低功耗的 CMOS 兼容型 MEMS 2D 热流传感器","authors":"Ruining Xu;Izhar;Xiangyu Song;Linze Hong;Minghao Huang;Wei Xu","doi":"10.1109/JMEMS.2024.3420420","DOIUrl":null,"url":null,"abstract":"In this letter, we present a CMOS-compatible MEMS micromachined and fully packaged two-dimensional (2D) thermal flow sensor. The sensor’s design parameters are determined by a nonlinear one-dimensional (1D) model. The fabricated 2D flow sensor features a \n<inline-formula> <tex-math>$4\\mu $ </tex-math></inline-formula>\nm thick suspended circular membrane and is further packaged into a bypass housing structure. Compared to state-of-the-art sensors, the packaged 2D flow sensor shows a higher normalized sensitivity of 50mV/(m/s)/W and low power consumption of less than 7mW. Besides, the developed sensor system achieved a measured angle error of less than 3° and an average velocity error of less than 4% for an input airflow of 0-30m/s within the full range of 360°. It also achieved a response time of <11ms across all airflow speeds. The experimental results conclude that the developed 2D flow sensor is promising for airflow measurement in smart buildings and meteorological monitoring systems.[2024-0048]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"505-507"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMOS-Compatible MEMS 2D Thermal Flow Sensor With High Sensitivity and Low Power Consumption\",\"authors\":\"Ruining Xu;Izhar;Xiangyu Song;Linze Hong;Minghao Huang;Wei Xu\",\"doi\":\"10.1109/JMEMS.2024.3420420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we present a CMOS-compatible MEMS micromachined and fully packaged two-dimensional (2D) thermal flow sensor. The sensor’s design parameters are determined by a nonlinear one-dimensional (1D) model. The fabricated 2D flow sensor features a \\n<inline-formula> <tex-math>$4\\\\mu $ </tex-math></inline-formula>\\nm thick suspended circular membrane and is further packaged into a bypass housing structure. Compared to state-of-the-art sensors, the packaged 2D flow sensor shows a higher normalized sensitivity of 50mV/(m/s)/W and low power consumption of less than 7mW. Besides, the developed sensor system achieved a measured angle error of less than 3° and an average velocity error of less than 4% for an input airflow of 0-30m/s within the full range of 360°. It also achieved a response time of <11ms across all airflow speeds. The experimental results conclude that the developed 2D flow sensor is promising for airflow measurement in smart buildings and meteorological monitoring systems.[2024-0048]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 5\",\"pages\":\"505-507\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10595131/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10595131/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
CMOS-Compatible MEMS 2D Thermal Flow Sensor With High Sensitivity and Low Power Consumption
In this letter, we present a CMOS-compatible MEMS micromachined and fully packaged two-dimensional (2D) thermal flow sensor. The sensor’s design parameters are determined by a nonlinear one-dimensional (1D) model. The fabricated 2D flow sensor features a
$4\mu $
m thick suspended circular membrane and is further packaged into a bypass housing structure. Compared to state-of-the-art sensors, the packaged 2D flow sensor shows a higher normalized sensitivity of 50mV/(m/s)/W and low power consumption of less than 7mW. Besides, the developed sensor system achieved a measured angle error of less than 3° and an average velocity error of less than 4% for an input airflow of 0-30m/s within the full range of 360°. It also achieved a response time of <11ms across all airflow speeds. The experimental results conclude that the developed 2D flow sensor is promising for airflow measurement in smart buildings and meteorological monitoring systems.[2024-0048]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.