光生物调节对完全性脊髓损伤伴骨质疏松症患者的骨矿物质密度、血清维生素 D 和骨形成标志物的影响。

IF 1.8 Q2 SURGERY
Esmaeil Mohammadzadeh, Aref Hosseinian Amiri, Reza Fekrazad, Rainer A Leitgeb, Winfried Mayr, Kamran Ezzati
{"title":"光生物调节对完全性脊髓损伤伴骨质疏松症患者的骨矿物质密度、血清维生素 D 和骨形成标志物的影响。","authors":"Esmaeil Mohammadzadeh, Aref Hosseinian Amiri, Reza Fekrazad, Rainer A Leitgeb, Winfried Mayr, Kamran Ezzati","doi":"10.1089/photob.2023.0195","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Study design:</i></b> A quasi-experimental study utilized a matched-pair design, administering photobiomodulation at four-sites on one side of the body and assigning control to the other side at corresponding sites. <b><i>Objectives:</i></b> This study aimed to assess photobiomodulation treatment effects on bone mineral density (BMD) measurement using dual-energy X-ray-absorptiometry in individuals with complete spinal cord injury (C.SCI) and osteoporosis. <b><i>Methods:</i></b> Eight patients received treatment at four-sites: forearm-mid-distal (MID), proximal-femur, distal-femur, and proximal-tibia, totaling 32 sites. Using an 830 nm gallium-aluminum-arsenide semiconductor laser irradiation was administered three times weekly for 8 weeks. Different doses (energy density) were determined depending on bone depth from skin surface, as assessed by sonography and adjusted through irradiation time to be 8, 10, and 12 J/cm<sup>2</sup> for depths <1 cm, between 1 and 1.5 cm, and >1.5 cm, respectively, using 200 mW power to deliver the optimal isodose of laser at each depth of bone within each therapeutic site. BMD was measured at baseline, week 8 of treatment, and week 15 of follow-up. Serum 25-(OH)-vitamin D and bone formation markers including osteocalcin and bone-alkaline-phosphatase (B-ALP) were also assessed at baseline and week 8 of treatment. <b><i>Results:</i></b> Significant increases in BMD were noted in proximal-femur and forearm-MID at both week 8 and week 15. Serum 25-(OH)-vitamin D levels significantly increased after treatment. However, no notable changes were observed in distal-femur and proximal-tibia BMD or in osteocalcin and B-ALP levels. <b><i>Conclusions:</i></b> Photobiomodulation (830 nm) laser demonstrated efficacy in improving BMD at proximal-femur and forearm-MID in individuals with C.SCI. Moreover, the observed positive influence on vitamin D levels suggests a potential photobiomodulation role, warranting further investigation.</p>","PeriodicalId":94169,"journal":{"name":"Photobiomodulation, photomedicine, and laser surgery","volume":" ","pages":"693-700"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Photobiomodulation on Bone Mineral Density, Serum Vitamin D, and Bone Formation Markers in Individuals with Complete Spinal Cord Injuries with Osteoporosis.\",\"authors\":\"Esmaeil Mohammadzadeh, Aref Hosseinian Amiri, Reza Fekrazad, Rainer A Leitgeb, Winfried Mayr, Kamran Ezzati\",\"doi\":\"10.1089/photob.2023.0195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Study design:</i></b> A quasi-experimental study utilized a matched-pair design, administering photobiomodulation at four-sites on one side of the body and assigning control to the other side at corresponding sites. <b><i>Objectives:</i></b> This study aimed to assess photobiomodulation treatment effects on bone mineral density (BMD) measurement using dual-energy X-ray-absorptiometry in individuals with complete spinal cord injury (C.SCI) and osteoporosis. <b><i>Methods:</i></b> Eight patients received treatment at four-sites: forearm-mid-distal (MID), proximal-femur, distal-femur, and proximal-tibia, totaling 32 sites. Using an 830 nm gallium-aluminum-arsenide semiconductor laser irradiation was administered three times weekly for 8 weeks. Different doses (energy density) were determined depending on bone depth from skin surface, as assessed by sonography and adjusted through irradiation time to be 8, 10, and 12 J/cm<sup>2</sup> for depths <1 cm, between 1 and 1.5 cm, and >1.5 cm, respectively, using 200 mW power to deliver the optimal isodose of laser at each depth of bone within each therapeutic site. BMD was measured at baseline, week 8 of treatment, and week 15 of follow-up. Serum 25-(OH)-vitamin D and bone formation markers including osteocalcin and bone-alkaline-phosphatase (B-ALP) were also assessed at baseline and week 8 of treatment. <b><i>Results:</i></b> Significant increases in BMD were noted in proximal-femur and forearm-MID at both week 8 and week 15. Serum 25-(OH)-vitamin D levels significantly increased after treatment. However, no notable changes were observed in distal-femur and proximal-tibia BMD or in osteocalcin and B-ALP levels. <b><i>Conclusions:</i></b> Photobiomodulation (830 nm) laser demonstrated efficacy in improving BMD at proximal-femur and forearm-MID in individuals with C.SCI. Moreover, the observed positive influence on vitamin D levels suggests a potential photobiomodulation role, warranting further investigation.</p>\",\"PeriodicalId\":94169,\"journal\":{\"name\":\"Photobiomodulation, photomedicine, and laser surgery\",\"volume\":\" \",\"pages\":\"693-700\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photobiomodulation, photomedicine, and laser surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/photob.2023.0195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photobiomodulation, photomedicine, and laser surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/photob.2023.0195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

摘要

研究设计:准实验研究采用配对设计,在身体一侧的四个部位进行光生物调节,并在另一侧的相应部位进行对照。研究目的本研究旨在评估光生物调节治疗对完全性脊髓损伤(C.SCI)和骨质疏松症患者使用双能 X 射线吸收测量法测量骨矿密度(BMD)的影响。治疗方法八名患者接受了四个部位的治疗:前臂-中远端(MID)、近端-股骨、远端-股骨和近端-胫骨,共 32 个部位。使用 830 纳米镓铝砷化半导体激光器进行照射,每周三次,持续 8 周。根据超声波检查评估的距皮肤表面的骨深度确定不同的剂量(能量密度),并通过照射时间将深度为 1.5 厘米的骨深度分别调整为 8、10 和 12 J/cm2,使用 200 mW 功率在每个治疗部位的每个骨深度提供最佳等剂量激光。在基线、治疗第 8 周和随访第 15 周时测量 BMD。血清 25-(OH)-vitamin D 和骨形成标志物(包括骨钙素和骨碱性磷酸酶 (B-ALP))也在基线和治疗第 8 周时进行了评估。结果显示在治疗第 8 周和第 15 周时,近端-女性和前臂-MID 的 BMD 均有显著增加。治疗后,血清 25-(OH)-vitamin D 水平显著增加。但是,远端-股骨和近端-胫骨的 BMD 以及骨钙素和 B-ALP 水平均未出现明显变化。结论光生物调节(830 nm)激光在改善 C.SCI 患者的近端-股骨和前臂-MID 的 BMD 方面具有疗效。此外,观察到的对维生素 D 水平的积极影响表明,光生物调节具有潜在的作用,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Photobiomodulation on Bone Mineral Density, Serum Vitamin D, and Bone Formation Markers in Individuals with Complete Spinal Cord Injuries with Osteoporosis.

Study design: A quasi-experimental study utilized a matched-pair design, administering photobiomodulation at four-sites on one side of the body and assigning control to the other side at corresponding sites. Objectives: This study aimed to assess photobiomodulation treatment effects on bone mineral density (BMD) measurement using dual-energy X-ray-absorptiometry in individuals with complete spinal cord injury (C.SCI) and osteoporosis. Methods: Eight patients received treatment at four-sites: forearm-mid-distal (MID), proximal-femur, distal-femur, and proximal-tibia, totaling 32 sites. Using an 830 nm gallium-aluminum-arsenide semiconductor laser irradiation was administered three times weekly for 8 weeks. Different doses (energy density) were determined depending on bone depth from skin surface, as assessed by sonography and adjusted through irradiation time to be 8, 10, and 12 J/cm2 for depths <1 cm, between 1 and 1.5 cm, and >1.5 cm, respectively, using 200 mW power to deliver the optimal isodose of laser at each depth of bone within each therapeutic site. BMD was measured at baseline, week 8 of treatment, and week 15 of follow-up. Serum 25-(OH)-vitamin D and bone formation markers including osteocalcin and bone-alkaline-phosphatase (B-ALP) were also assessed at baseline and week 8 of treatment. Results: Significant increases in BMD were noted in proximal-femur and forearm-MID at both week 8 and week 15. Serum 25-(OH)-vitamin D levels significantly increased after treatment. However, no notable changes were observed in distal-femur and proximal-tibia BMD or in osteocalcin and B-ALP levels. Conclusions: Photobiomodulation (830 nm) laser demonstrated efficacy in improving BMD at proximal-femur and forearm-MID in individuals with C.SCI. Moreover, the observed positive influence on vitamin D levels suggests a potential photobiomodulation role, warranting further investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: Photobiomodulation, Photomedicine, and Laser Surgery Editor-in-Chief: Michael R Hamblin, PhD Co-Editor-in-Chief: Heidi Abrahamse, PhD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信