Alex S Baldwin, Marie-Céline Lorenzini, Annabel Wing-Yan Fan, Robert F Hess, Alexandre Reynaud
{"title":"分色对比排序测试:一种测量双眼失衡深度的方法。","authors":"Alex S Baldwin, Marie-Céline Lorenzini, Annabel Wing-Yan Fan, Robert F Hess, Alexandre Reynaud","doi":"10.1167/jov.24.11.2","DOIUrl":null,"url":null,"abstract":"<p><p>In binocular vision, the relative strength of the input from the two eyes can have significant functional impact. These inputs are typically balanced; however, in some conditions (e.g., amblyopia), one eye will dominate over the other. To quantify imbalances in binocular vision, we have developed the Dichoptic Contrast Ordering Test (DiCOT). Implemented on a tablet device, the program uses rankings of perceived contrast (of dichoptically presented stimuli) to find a scaling factor that balances the two eyes. We measured how physical interventions (applied to one eye) affect the DiCOT measurements, including neutral density (ND) filters, Bangerter filters, and optical blur introduced by a +3-diopter (D) lens. The DiCOT results were compared to those from the Dichoptic Letter Test (DLT). Both the DiCOT and the DLT showed excellent test-retest reliability; however, the magnitude of the imbalances introduced by the interventions was greater in the DLT. To find consistency between the methods, rescaling the DiCOT results from individual conditions gave good results. However, the adjustments required for the +3-D lens condition were quite different from those for the ND and Bangerter filters. Our results indicate that the DiCOT and DLT measures partially separate aspects of binocular imbalance. This supports the simultaneous use of both measures in future studies.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460568/pdf/","citationCount":"0","resultStr":"{\"title\":\"The dichoptic contrast ordering test: A method for measuring the depth of binocular imbalance.\",\"authors\":\"Alex S Baldwin, Marie-Céline Lorenzini, Annabel Wing-Yan Fan, Robert F Hess, Alexandre Reynaud\",\"doi\":\"10.1167/jov.24.11.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In binocular vision, the relative strength of the input from the two eyes can have significant functional impact. These inputs are typically balanced; however, in some conditions (e.g., amblyopia), one eye will dominate over the other. To quantify imbalances in binocular vision, we have developed the Dichoptic Contrast Ordering Test (DiCOT). Implemented on a tablet device, the program uses rankings of perceived contrast (of dichoptically presented stimuli) to find a scaling factor that balances the two eyes. We measured how physical interventions (applied to one eye) affect the DiCOT measurements, including neutral density (ND) filters, Bangerter filters, and optical blur introduced by a +3-diopter (D) lens. The DiCOT results were compared to those from the Dichoptic Letter Test (DLT). Both the DiCOT and the DLT showed excellent test-retest reliability; however, the magnitude of the imbalances introduced by the interventions was greater in the DLT. To find consistency between the methods, rescaling the DiCOT results from individual conditions gave good results. However, the adjustments required for the +3-D lens condition were quite different from those for the ND and Bangerter filters. Our results indicate that the DiCOT and DLT measures partially separate aspects of binocular imbalance. This supports the simultaneous use of both measures in future studies.</p>\",\"PeriodicalId\":49955,\"journal\":{\"name\":\"Journal of Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/jov.24.11.2\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.11.2","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
The dichoptic contrast ordering test: A method for measuring the depth of binocular imbalance.
In binocular vision, the relative strength of the input from the two eyes can have significant functional impact. These inputs are typically balanced; however, in some conditions (e.g., amblyopia), one eye will dominate over the other. To quantify imbalances in binocular vision, we have developed the Dichoptic Contrast Ordering Test (DiCOT). Implemented on a tablet device, the program uses rankings of perceived contrast (of dichoptically presented stimuli) to find a scaling factor that balances the two eyes. We measured how physical interventions (applied to one eye) affect the DiCOT measurements, including neutral density (ND) filters, Bangerter filters, and optical blur introduced by a +3-diopter (D) lens. The DiCOT results were compared to those from the Dichoptic Letter Test (DLT). Both the DiCOT and the DLT showed excellent test-retest reliability; however, the magnitude of the imbalances introduced by the interventions was greater in the DLT. To find consistency between the methods, rescaling the DiCOT results from individual conditions gave good results. However, the adjustments required for the +3-D lens condition were quite different from those for the ND and Bangerter filters. Our results indicate that the DiCOT and DLT measures partially separate aspects of binocular imbalance. This supports the simultaneous use of both measures in future studies.
期刊介绍:
Exploring all aspects of biological visual function, including spatial vision, perception,
low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.