Yong Zhi Yu, Wei Ting Ma, Xuming Wang, Guillaume Tcherkez, Hans Schnyder, Xiao Ying Gong
{"title":"通过叶片生物量和树木年轮的碳同位素鉴别调节水利用效率估算值:非光合分馏问题。","authors":"Yong Zhi Yu, Wei Ting Ma, Xuming Wang, Guillaume Tcherkez, Hans Schnyder, Xiao Ying Gong","doi":"10.1111/nph.20170","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon isotope discrimination (∆) in leaf biomass (∆<sub>BL</sub>) and tree rings (∆<sub>TR</sub>) provides important proxies for plant responses to climate change, specifically in terms of intrinsic water-use efficiency (iWUE). However, the nonphotosynthetic <sup>12</sup>C/<sup>13</sup>C fractionation in plant tissues has rarely been quantified and its influence on iWUE estimation remains uncertain. We derived a comprehensive, ∆ based iWUE model (iWUE<sub>com</sub>) which includes nonphotosynthetic fractionations (d) and characterized tissue-specific d-values based on global compilations of data of ∆<sub>BL</sub>, ∆<sub>TR</sub> and real-time ∆ in leaf photosynthesis (∆<sub>online</sub>). iWUE<sub>com</sub> was further validated with independent datasets. ∆<sub>BL</sub> was larger than ∆<sub>online</sub> by 2.53‰, while ∆<sub>BL</sub> and ∆<sub>TR</sub> showed a mean offset of 2.76‰, indicating that ∆<sub>TR</sub> is quantitatively very similar to ∆<sub>online</sub>. Applying the tissue-specific d-values (d<sub>BL</sub> = 2.5‰, d<sub>TR</sub> = 0‰), iWUE estimated from ∆<sub>BL</sub> aligned well with those estimated from ∆<sub>TR</sub> or gas exchange. ∆<sub>BL</sub> and ∆<sub>TR</sub> showed a consistent iWUE trend with an average CO<sub>2</sub> sensitivity of 0.15 ppm ppm<sup>-1</sup> during 1975-2015. Accounting for nonphotosynthetic fractionations improves the estimation of iWUE based on isotope records in leaf biomass and tree rings, which is ultimate for inferring changes in carbon and water cycles under historical and future climate.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"2225-2238"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconciling water-use efficiency estimates from carbon isotope discrimination of leaf biomass and tree rings: nonphotosynthetic fractionation matters.\",\"authors\":\"Yong Zhi Yu, Wei Ting Ma, Xuming Wang, Guillaume Tcherkez, Hans Schnyder, Xiao Ying Gong\",\"doi\":\"10.1111/nph.20170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon isotope discrimination (∆) in leaf biomass (∆<sub>BL</sub>) and tree rings (∆<sub>TR</sub>) provides important proxies for plant responses to climate change, specifically in terms of intrinsic water-use efficiency (iWUE). However, the nonphotosynthetic <sup>12</sup>C/<sup>13</sup>C fractionation in plant tissues has rarely been quantified and its influence on iWUE estimation remains uncertain. We derived a comprehensive, ∆ based iWUE model (iWUE<sub>com</sub>) which includes nonphotosynthetic fractionations (d) and characterized tissue-specific d-values based on global compilations of data of ∆<sub>BL</sub>, ∆<sub>TR</sub> and real-time ∆ in leaf photosynthesis (∆<sub>online</sub>). iWUE<sub>com</sub> was further validated with independent datasets. ∆<sub>BL</sub> was larger than ∆<sub>online</sub> by 2.53‰, while ∆<sub>BL</sub> and ∆<sub>TR</sub> showed a mean offset of 2.76‰, indicating that ∆<sub>TR</sub> is quantitatively very similar to ∆<sub>online</sub>. Applying the tissue-specific d-values (d<sub>BL</sub> = 2.5‰, d<sub>TR</sub> = 0‰), iWUE estimated from ∆<sub>BL</sub> aligned well with those estimated from ∆<sub>TR</sub> or gas exchange. ∆<sub>BL</sub> and ∆<sub>TR</sub> showed a consistent iWUE trend with an average CO<sub>2</sub> sensitivity of 0.15 ppm ppm<sup>-1</sup> during 1975-2015. Accounting for nonphotosynthetic fractionations improves the estimation of iWUE based on isotope records in leaf biomass and tree rings, which is ultimate for inferring changes in carbon and water cycles under historical and future climate.</p>\",\"PeriodicalId\":48887,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\" \",\"pages\":\"2225-2238\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.20170\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20170","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Reconciling water-use efficiency estimates from carbon isotope discrimination of leaf biomass and tree rings: nonphotosynthetic fractionation matters.
Carbon isotope discrimination (∆) in leaf biomass (∆BL) and tree rings (∆TR) provides important proxies for plant responses to climate change, specifically in terms of intrinsic water-use efficiency (iWUE). However, the nonphotosynthetic 12C/13C fractionation in plant tissues has rarely been quantified and its influence on iWUE estimation remains uncertain. We derived a comprehensive, ∆ based iWUE model (iWUEcom) which includes nonphotosynthetic fractionations (d) and characterized tissue-specific d-values based on global compilations of data of ∆BL, ∆TR and real-time ∆ in leaf photosynthesis (∆online). iWUEcom was further validated with independent datasets. ∆BL was larger than ∆online by 2.53‰, while ∆BL and ∆TR showed a mean offset of 2.76‰, indicating that ∆TR is quantitatively very similar to ∆online. Applying the tissue-specific d-values (dBL = 2.5‰, dTR = 0‰), iWUE estimated from ∆BL aligned well with those estimated from ∆TR or gas exchange. ∆BL and ∆TR showed a consistent iWUE trend with an average CO2 sensitivity of 0.15 ppm ppm-1 during 1975-2015. Accounting for nonphotosynthetic fractionations improves the estimation of iWUE based on isotope records in leaf biomass and tree rings, which is ultimate for inferring changes in carbon and water cycles under historical and future climate.
期刊介绍:
New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.