Baoyin Chen, Junjun Wang, Manna Huang, Yuanye Gui, Qingqing Wei, Le Wang, Bao-Cai Tan
{"title":"拟南芥线粒体复合体 I 和复合体 V 亚复合体的组装需要 C1-FDX。","authors":"Baoyin Chen, Junjun Wang, Manna Huang, Yuanye Gui, Qingqing Wei, Le Wang, Bao-Cai Tan","doi":"10.1371/journal.pgen.1011419","DOIUrl":null,"url":null,"abstract":"<p><p>C1-FDX (Complex I-ferredoxin) has been defined as a component of CI in a ferredoxin bridge in Arabidopsis mitochondria. However, its full function remains to be addressed. We created two c1-fdx mutants in Arabidopsis using the CRISPR-Cas9 methodology. The mutants show delayed seed germination. Over-expression of C1-FDX rescues the phenotype. Molecular analyses showed that loss of the C1-FDX function decreases the abundance and activity of both CI and subcomplexes of CV. In contrast, the over-expression of C1-FDX-GFP enhances the CI* (a sub-complex of CI) and CV assembly. Immunodetection reveals that the stoichiometric ratio of the α:β subunits in the F1 module of CV is altered in the c1-fdx mutant. In the complemented mutants, C1-FDX-GFP was found to be associated with the F' and α/β sub-complexes of CV. Protein interaction assays showed that C1-FDX could interact with the β, γ, δ, and ε subunits of the F1 module, indicating that C1-FDX, a structural component of CI, also functions as an assembly factor in the assembly of F' and α/β sub-complexes of CV. These results reveal a new role of C1-FDX in the CI and CV assembly and seed germination in Arabidopsis.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 10","pages":"e1011419"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446459/pdf/","citationCount":"0","resultStr":"{\"title\":\"C1-FDX is required for the assembly of mitochondrial complex I and subcomplexes of complex V in Arabidopsis.\",\"authors\":\"Baoyin Chen, Junjun Wang, Manna Huang, Yuanye Gui, Qingqing Wei, Le Wang, Bao-Cai Tan\",\"doi\":\"10.1371/journal.pgen.1011419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>C1-FDX (Complex I-ferredoxin) has been defined as a component of CI in a ferredoxin bridge in Arabidopsis mitochondria. However, its full function remains to be addressed. We created two c1-fdx mutants in Arabidopsis using the CRISPR-Cas9 methodology. The mutants show delayed seed germination. Over-expression of C1-FDX rescues the phenotype. Molecular analyses showed that loss of the C1-FDX function decreases the abundance and activity of both CI and subcomplexes of CV. In contrast, the over-expression of C1-FDX-GFP enhances the CI* (a sub-complex of CI) and CV assembly. Immunodetection reveals that the stoichiometric ratio of the α:β subunits in the F1 module of CV is altered in the c1-fdx mutant. In the complemented mutants, C1-FDX-GFP was found to be associated with the F' and α/β sub-complexes of CV. Protein interaction assays showed that C1-FDX could interact with the β, γ, δ, and ε subunits of the F1 module, indicating that C1-FDX, a structural component of CI, also functions as an assembly factor in the assembly of F' and α/β sub-complexes of CV. These results reveal a new role of C1-FDX in the CI and CV assembly and seed germination in Arabidopsis.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"20 10\",\"pages\":\"e1011419\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446459/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011419\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011419","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
C1-FDX(复合体 I-铁氧还蛋白)已被定义为拟南芥线粒体中铁氧还蛋白桥 CI 的一个组成部分。然而,它的全部功能仍有待研究。我们利用 CRISPR-Cas9 方法在拟南芥中创建了两个 c1-fdx 突变体。突变体表现出种子萌发延迟。C1-FDX的过度表达能挽救这种表型。分子分析表明,C1-FDX 功能的缺失会降低 CI 和 CV 亚复合物的丰度和活性。相反,C1-FDX-GFP 的过度表达增强了 CI*(CI 的亚复合物)和 CV 的组装。免疫检测显示,在 c1-fdx 突变体中,CV F1 模块中 α:β 亚基的化学计量比发生了改变。在互补突变体中,发现 C1-FDX-GFP 与 CV 的 F'和 α/β 亚复合物相关。蛋白质相互作用实验表明,C1-FDX能与F1模块的β、γ、δ和ε亚基相互作用,这表明C1-FDX作为CI的结构成分,在CV的F'和α/β亚复合物的组装过程中也起着组装因子的作用。这些结果揭示了 C1-FDX 在拟南芥的 CI 和 CV 组装以及种子萌发过程中的新作用。
C1-FDX is required for the assembly of mitochondrial complex I and subcomplexes of complex V in Arabidopsis.
C1-FDX (Complex I-ferredoxin) has been defined as a component of CI in a ferredoxin bridge in Arabidopsis mitochondria. However, its full function remains to be addressed. We created two c1-fdx mutants in Arabidopsis using the CRISPR-Cas9 methodology. The mutants show delayed seed germination. Over-expression of C1-FDX rescues the phenotype. Molecular analyses showed that loss of the C1-FDX function decreases the abundance and activity of both CI and subcomplexes of CV. In contrast, the over-expression of C1-FDX-GFP enhances the CI* (a sub-complex of CI) and CV assembly. Immunodetection reveals that the stoichiometric ratio of the α:β subunits in the F1 module of CV is altered in the c1-fdx mutant. In the complemented mutants, C1-FDX-GFP was found to be associated with the F' and α/β sub-complexes of CV. Protein interaction assays showed that C1-FDX could interact with the β, γ, δ, and ε subunits of the F1 module, indicating that C1-FDX, a structural component of CI, also functions as an assembly factor in the assembly of F' and α/β sub-complexes of CV. These results reveal a new role of C1-FDX in the CI and CV assembly and seed germination in Arabidopsis.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.