{"title":"狗与人之间的声音互动与狗的感觉运动调谐相匹配。","authors":"Eloïse C Déaux, Théophane Piette, Florence Gaunet, Thierry Legou, Luc Arnal, Anne-Lise Giraud","doi":"10.1371/journal.pbio.3002789","DOIUrl":null,"url":null,"abstract":"<p><p>Within species, vocal and auditory systems presumably coevolved to converge on a critical temporal acoustic structure that can be best produced and perceived. While dogs cannot produce articulated sounds, they respond to speech, raising the question as to whether this heterospecific receptive ability could be shaped by exposure to speech or remains bounded by their own sensorimotor capacity. Using acoustic analyses of dog vocalisations, we show that their main production rhythm is slower than the dominant (syllabic) speech rate, and that human-dog-directed speech falls halfway in between. Comparative exploration of neural (electroencephalography) and behavioural responses to speech reveals that comprehension in dogs relies on a slower speech rhythm tracking (delta) than humans' (theta), even though dogs are equally sensitive to speech content and prosody. Thus, the dog audio-motor tuning differs from humans', and we hypothesise that humans may adjust their speech rate to this shared temporal channel as means to improve communication efficacy.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444399/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dog-human vocal interactions match dogs' sensory-motor tuning.\",\"authors\":\"Eloïse C Déaux, Théophane Piette, Florence Gaunet, Thierry Legou, Luc Arnal, Anne-Lise Giraud\",\"doi\":\"10.1371/journal.pbio.3002789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Within species, vocal and auditory systems presumably coevolved to converge on a critical temporal acoustic structure that can be best produced and perceived. While dogs cannot produce articulated sounds, they respond to speech, raising the question as to whether this heterospecific receptive ability could be shaped by exposure to speech or remains bounded by their own sensorimotor capacity. Using acoustic analyses of dog vocalisations, we show that their main production rhythm is slower than the dominant (syllabic) speech rate, and that human-dog-directed speech falls halfway in between. Comparative exploration of neural (electroencephalography) and behavioural responses to speech reveals that comprehension in dogs relies on a slower speech rhythm tracking (delta) than humans' (theta), even though dogs are equally sensitive to speech content and prosody. Thus, the dog audio-motor tuning differs from humans', and we hypothesise that humans may adjust their speech rate to this shared temporal channel as means to improve communication efficacy.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444399/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002789\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002789","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Dog-human vocal interactions match dogs' sensory-motor tuning.
Within species, vocal and auditory systems presumably coevolved to converge on a critical temporal acoustic structure that can be best produced and perceived. While dogs cannot produce articulated sounds, they respond to speech, raising the question as to whether this heterospecific receptive ability could be shaped by exposure to speech or remains bounded by their own sensorimotor capacity. Using acoustic analyses of dog vocalisations, we show that their main production rhythm is slower than the dominant (syllabic) speech rate, and that human-dog-directed speech falls halfway in between. Comparative exploration of neural (electroencephalography) and behavioural responses to speech reveals that comprehension in dogs relies on a slower speech rhythm tracking (delta) than humans' (theta), even though dogs are equally sensitive to speech content and prosody. Thus, the dog audio-motor tuning differs from humans', and we hypothesise that humans may adjust their speech rate to this shared temporal channel as means to improve communication efficacy.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.