意大利青少年中与 COVID-19 相关的认知、大脑结构和功能变化:一项多模式纵向病例对照研究。

IF 5.8 1区 医学 Q1 PSYCHIATRY
Azzurra Invernizzi, Stefano Renzetti, Christoph van Thriel, Elza Rechtman, Alessandra Patrono, Claudia Ambrosi, Lorella Mascaro, Daniele Corbo, Giuseppa Cagna, Roberto Gasparotti, Abraham Reichenberg, Cheuk Y Tang, Roberto G Lucchini, Robert O Wright, Donatella Placidi, Megan K Horton
{"title":"意大利青少年中与 COVID-19 相关的认知、大脑结构和功能变化:一项多模式纵向病例对照研究。","authors":"Azzurra Invernizzi, Stefano Renzetti, Christoph van Thriel, Elza Rechtman, Alessandra Patrono, Claudia Ambrosi, Lorella Mascaro, Daniele Corbo, Giuseppa Cagna, Roberto Gasparotti, Abraham Reichenberg, Cheuk Y Tang, Roberto G Lucchini, Robert O Wright, Donatella Placidi, Megan K Horton","doi":"10.1038/s41398-024-03108-2","DOIUrl":null,"url":null,"abstract":"<p><p>Coronavirus disease 2019 (COVID-19) has been associated with brain functional, structural, and cognitive changes that persist months after infection. Most studies of the neurologic outcomes related to COVID-19 focus on severe infection and aging populations. Here, we investigated the neural activities underlying COVID-19 related outcomes in a case-control study of mildly infected youth enrolled in a longitudinal study in Lombardy, Italy, a global hotspot of COVID-19. All participants (13 cases, 27 controls, mean age 24 years) completed resting-state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial working memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (EC) and data-driven statistical methods, we examined differences in EC<sub>delta</sub> (i.e., the difference in EC values pre- and post-COVID-19) and Volumetric<sub>delta</sub> (i.e., the difference in cortical volume of cortical and subcortical areas pre- and post-COVID) between COVID-19 cases and controls. We found that EC<sub>delta</sub> significantly between COVID-19 and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampus, left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in Volumetric<sub>delta</sub> between groups (p = 0.041). The reduced EC<sub>delta</sub> in the left amygdala associated with COVID-19 status mediated the association between COVID-19 and disrupted spatial working memory. Our results show persistent structural, functional and cognitive brain changes in key brain areas associated with olfaction and cognition. These results may guide treatment efforts to assess the longevity, reversibility and impact of the observed brain and cognitive changes following COVID-19.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447249/pdf/","citationCount":"0","resultStr":"{\"title\":\"COVID-19 related cognitive, structural and functional brain changes among Italian adolescents and young adults: a multimodal longitudinal case-control study.\",\"authors\":\"Azzurra Invernizzi, Stefano Renzetti, Christoph van Thriel, Elza Rechtman, Alessandra Patrono, Claudia Ambrosi, Lorella Mascaro, Daniele Corbo, Giuseppa Cagna, Roberto Gasparotti, Abraham Reichenberg, Cheuk Y Tang, Roberto G Lucchini, Robert O Wright, Donatella Placidi, Megan K Horton\",\"doi\":\"10.1038/s41398-024-03108-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronavirus disease 2019 (COVID-19) has been associated with brain functional, structural, and cognitive changes that persist months after infection. Most studies of the neurologic outcomes related to COVID-19 focus on severe infection and aging populations. Here, we investigated the neural activities underlying COVID-19 related outcomes in a case-control study of mildly infected youth enrolled in a longitudinal study in Lombardy, Italy, a global hotspot of COVID-19. All participants (13 cases, 27 controls, mean age 24 years) completed resting-state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial working memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (EC) and data-driven statistical methods, we examined differences in EC<sub>delta</sub> (i.e., the difference in EC values pre- and post-COVID-19) and Volumetric<sub>delta</sub> (i.e., the difference in cortical volume of cortical and subcortical areas pre- and post-COVID) between COVID-19 cases and controls. We found that EC<sub>delta</sub> significantly between COVID-19 and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampus, left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in Volumetric<sub>delta</sub> between groups (p = 0.041). The reduced EC<sub>delta</sub> in the left amygdala associated with COVID-19 status mediated the association between COVID-19 and disrupted spatial working memory. Our results show persistent structural, functional and cognitive brain changes in key brain areas associated with olfaction and cognition. These results may guide treatment efforts to assess the longevity, reversibility and impact of the observed brain and cognitive changes following COVID-19.</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447249/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-024-03108-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03108-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

冠状病毒病 2019(COVID-19)与感染数月后持续存在的大脑功能、结构和认知变化有关。与 COVID-19 相关的神经系统结果研究大多集中在严重感染和老龄人群。在此,我们在一项病例对照研究中调查了 COVID-19 相关结果的神经活动,研究对象是在 COVID-19 全球热点地区意大利伦巴第参加纵向研究的轻度感染青年。所有参与者(13 例病例,27 例对照,平均年龄 24 岁)均在基线(COVID 前)和随访(COVID 后)期间完成了静息态功能(fMRI)、结构性 MRI 和认知评估(CANTAB 空间工作记忆)。利用图论特征向量中心性(EC)和数据驱动统计方法,我们研究了 COVID-19 病例和对照组之间 ECdelta(即 COVID-19 前后 EC 值的差异)和 Volumetricdelta(即 COVID 前后皮质和皮质下区域皮质体积的差异)的差异。我们发现,COVID-19 和健康参与者在五个脑区的 ECdelta 显著不同:右侧颅内皮质、右侧舌回、左侧海马、左侧杏仁核、左侧额眶皮质。左侧海马的 Volumetricdelta 值在不同组间显著下降(p = 0.041)。与 COVID-19 状态相关的左侧杏仁核 ECdelta 的减少介导了 COVID-19 与空间工作记忆紊乱之间的关联。我们的研究结果表明,与嗅觉和认知相关的关键脑区在结构、功能和认知方面发生了持续性变化。这些结果可以指导治疗工作,以评估 COVID-19 后观察到的大脑和认知变化的持久性、可逆性和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COVID-19 related cognitive, structural and functional brain changes among Italian adolescents and young adults: a multimodal longitudinal case-control study.

Coronavirus disease 2019 (COVID-19) has been associated with brain functional, structural, and cognitive changes that persist months after infection. Most studies of the neurologic outcomes related to COVID-19 focus on severe infection and aging populations. Here, we investigated the neural activities underlying COVID-19 related outcomes in a case-control study of mildly infected youth enrolled in a longitudinal study in Lombardy, Italy, a global hotspot of COVID-19. All participants (13 cases, 27 controls, mean age 24 years) completed resting-state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial working memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (EC) and data-driven statistical methods, we examined differences in ECdelta (i.e., the difference in EC values pre- and post-COVID-19) and Volumetricdelta (i.e., the difference in cortical volume of cortical and subcortical areas pre- and post-COVID) between COVID-19 cases and controls. We found that ECdelta significantly between COVID-19 and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampus, left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in Volumetricdelta between groups (p = 0.041). The reduced ECdelta in the left amygdala associated with COVID-19 status mediated the association between COVID-19 and disrupted spatial working memory. Our results show persistent structural, functional and cognitive brain changes in key brain areas associated with olfaction and cognition. These results may guide treatment efforts to assess the longevity, reversibility and impact of the observed brain and cognitive changes following COVID-19.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
2.90%
发文量
484
审稿时长
23 weeks
期刊介绍: Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信