{"title":"纹状体磷酸二酯酶10 A的变化及其与双相情感障碍I复发率的关系","authors":"Yasunori Sano, Yasuharu Yamamoto, Manabu Kubota, Sho Moriguchi, Kiwamu Matsuoka, Shin Kurose, Kenji Tagai, Hironobu Endo, Bun Yamagata, Hisaomi Suzuki, Ryosuke Tarumi, Kie Nomoto, Yuhei Takado, Kazunori Kawamura, Ming-Rong Zhang, Hajime Tabuchi, Masaru Mimura, Hiroyuki Uchida, Makoto Higuchi, Keisuke Takahata","doi":"10.1038/s41398-024-03107-3","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphodiesterase 10 A (PDE10A), a pivotal element of the second messenger signaling downstream of the dopamine receptor stimulation, is conceived to be crucially involved in the mood instability of bipolar I disorder (BD-I) as a primary causal factor or in response to dysregulated dopaminergic tone. We aimed to determine whether striatal PDE10A availability is altered in patients with BD-I and assessed its relationship with the clinical characteristics of BD-I. This case-control study used positron emission tomography (PET) with 2-(2-(3-(4-(2-[<sup>18</sup>F]fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ([<sup>18</sup>F]MNI-659), a radioligand that binds to PDE10A, to examine the alterations of the striatal PDE10A availability in the living brains of individuals with BD-I and their association with the clinical characteristics of BD-I. [<sup>18</sup>F]MNI-659 PET data were acquired from 25 patients with BD-I and 27 age- and sex-matched healthy controls. Patients with BD-I had significantly lower PDE10A availability than controls in the executive (F = 8.86; P = 0.005) and sensorimotor (F = 6.13; P = 0.017) subregions of the striatum. Lower PDE10A availability in the executive subregion was significantly associated with a higher frequency of mood episodes in patients with BD-I (r = -0.546; P = 0.007). This study provides the first evidence of altered PDE10A availability in patients with BD-I. Lower PDE10A availability in the executive subregion of the striatum is associated with an increased recurrence risk, suggesting that PDE10A may prevent BD-I relapse. Further studies are required to elucidate the role of PDE10A in BD-I pathophysiology and explore its potential as a treatment target.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447081/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alterations of striatal phosphodiesterase 10 A and their association with recurrence rate in bipolar I disorder.\",\"authors\":\"Yasunori Sano, Yasuharu Yamamoto, Manabu Kubota, Sho Moriguchi, Kiwamu Matsuoka, Shin Kurose, Kenji Tagai, Hironobu Endo, Bun Yamagata, Hisaomi Suzuki, Ryosuke Tarumi, Kie Nomoto, Yuhei Takado, Kazunori Kawamura, Ming-Rong Zhang, Hajime Tabuchi, Masaru Mimura, Hiroyuki Uchida, Makoto Higuchi, Keisuke Takahata\",\"doi\":\"10.1038/s41398-024-03107-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphodiesterase 10 A (PDE10A), a pivotal element of the second messenger signaling downstream of the dopamine receptor stimulation, is conceived to be crucially involved in the mood instability of bipolar I disorder (BD-I) as a primary causal factor or in response to dysregulated dopaminergic tone. We aimed to determine whether striatal PDE10A availability is altered in patients with BD-I and assessed its relationship with the clinical characteristics of BD-I. This case-control study used positron emission tomography (PET) with 2-(2-(3-(4-(2-[<sup>18</sup>F]fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ([<sup>18</sup>F]MNI-659), a radioligand that binds to PDE10A, to examine the alterations of the striatal PDE10A availability in the living brains of individuals with BD-I and their association with the clinical characteristics of BD-I. [<sup>18</sup>F]MNI-659 PET data were acquired from 25 patients with BD-I and 27 age- and sex-matched healthy controls. Patients with BD-I had significantly lower PDE10A availability than controls in the executive (F = 8.86; P = 0.005) and sensorimotor (F = 6.13; P = 0.017) subregions of the striatum. Lower PDE10A availability in the executive subregion was significantly associated with a higher frequency of mood episodes in patients with BD-I (r = -0.546; P = 0.007). This study provides the first evidence of altered PDE10A availability in patients with BD-I. Lower PDE10A availability in the executive subregion of the striatum is associated with an increased recurrence risk, suggesting that PDE10A may prevent BD-I relapse. Further studies are required to elucidate the role of PDE10A in BD-I pathophysiology and explore its potential as a treatment target.</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447081/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-024-03107-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03107-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Alterations of striatal phosphodiesterase 10 A and their association with recurrence rate in bipolar I disorder.
Phosphodiesterase 10 A (PDE10A), a pivotal element of the second messenger signaling downstream of the dopamine receptor stimulation, is conceived to be crucially involved in the mood instability of bipolar I disorder (BD-I) as a primary causal factor or in response to dysregulated dopaminergic tone. We aimed to determine whether striatal PDE10A availability is altered in patients with BD-I and assessed its relationship with the clinical characteristics of BD-I. This case-control study used positron emission tomography (PET) with 2-(2-(3-(4-(2-[18F]fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ([18F]MNI-659), a radioligand that binds to PDE10A, to examine the alterations of the striatal PDE10A availability in the living brains of individuals with BD-I and their association with the clinical characteristics of BD-I. [18F]MNI-659 PET data were acquired from 25 patients with BD-I and 27 age- and sex-matched healthy controls. Patients with BD-I had significantly lower PDE10A availability than controls in the executive (F = 8.86; P = 0.005) and sensorimotor (F = 6.13; P = 0.017) subregions of the striatum. Lower PDE10A availability in the executive subregion was significantly associated with a higher frequency of mood episodes in patients with BD-I (r = -0.546; P = 0.007). This study provides the first evidence of altered PDE10A availability in patients with BD-I. Lower PDE10A availability in the executive subregion of the striatum is associated with an increased recurrence risk, suggesting that PDE10A may prevent BD-I relapse. Further studies are required to elucidate the role of PDE10A in BD-I pathophysiology and explore its potential as a treatment target.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.