Marvin Krüger, Thomas Zemanek, Dominik Wuttke, Maximilian Dinkel, Albrecht Serfling, Elias Böckmann
{"title":"用于检测甜椒虫害症状的高光谱成像技术。","authors":"Marvin Krüger, Thomas Zemanek, Dominik Wuttke, Maximilian Dinkel, Albrecht Serfling, Elias Böckmann","doi":"10.1186/s13007-024-01273-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The automation of pest monitoring is highly important for enhancing integrated pest management in practice. In this context, advanced technologies are becoming increasingly explored. Hyperspectral imaging (HSI) is a technique that has been used frequently in recent years in the context of natural science, and the successful detection of several fungal diseases and some pests has been reported. Various automated measures and image analysis methods offer great potential for enhancing monitoring in practice.</p><p><strong>Results: </strong>In this study, the use of hyperspectral imaging over a wide spectrum from 400 to 2500 nm is investigated for noninvasive identification and the distinction of healthy plants and plants infested with Myzus persicae (Sulzer) and Frankliniella occidentalis (Pergande) on bell peppers. Pest infestations were carried out in netted areas, and images of single plants and dissected leaves were used to train the decision algorithm. Additionally, a specially modified spraying robot was converted into an autonomous platform used to carry the hyperspectral imaging system to take images under greenhouse conditions. The algorithm was developed via the XGBoost framework with gradient-boosted trees. Signals from specific wavelengths were found to be associated with the damage patterns of different insects. Under confined conditions, M. persicae and F. occidentalis infestations were distinguished from each other and from the uninfested control for single leaves. Differentiation was still possible when small whole plants were used. However, application under greenhouse conditions did not result in a good fit compared to the results of manual monitoring.</p><p><strong>Conclusion: </strong>Hyperspectral images can be used to distinguish sucking pests on bell peppers on the basis of single leaves and intact potted bell pepper plants under controlled conditions. Wavelength reduction methods offer options for multispectral camera usage in high-grown vegetable greenhouses. The application of automated platforms similar to the one tested in this study could be possible, but for successful pest detection under greenhouse conditions, algorithms should be further developed fully considering real-world conditions.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"156"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447932/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral imaging for pest symptom detection in bell pepper.\",\"authors\":\"Marvin Krüger, Thomas Zemanek, Dominik Wuttke, Maximilian Dinkel, Albrecht Serfling, Elias Böckmann\",\"doi\":\"10.1186/s13007-024-01273-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The automation of pest monitoring is highly important for enhancing integrated pest management in practice. In this context, advanced technologies are becoming increasingly explored. Hyperspectral imaging (HSI) is a technique that has been used frequently in recent years in the context of natural science, and the successful detection of several fungal diseases and some pests has been reported. Various automated measures and image analysis methods offer great potential for enhancing monitoring in practice.</p><p><strong>Results: </strong>In this study, the use of hyperspectral imaging over a wide spectrum from 400 to 2500 nm is investigated for noninvasive identification and the distinction of healthy plants and plants infested with Myzus persicae (Sulzer) and Frankliniella occidentalis (Pergande) on bell peppers. Pest infestations were carried out in netted areas, and images of single plants and dissected leaves were used to train the decision algorithm. Additionally, a specially modified spraying robot was converted into an autonomous platform used to carry the hyperspectral imaging system to take images under greenhouse conditions. The algorithm was developed via the XGBoost framework with gradient-boosted trees. Signals from specific wavelengths were found to be associated with the damage patterns of different insects. Under confined conditions, M. persicae and F. occidentalis infestations were distinguished from each other and from the uninfested control for single leaves. Differentiation was still possible when small whole plants were used. However, application under greenhouse conditions did not result in a good fit compared to the results of manual monitoring.</p><p><strong>Conclusion: </strong>Hyperspectral images can be used to distinguish sucking pests on bell peppers on the basis of single leaves and intact potted bell pepper plants under controlled conditions. Wavelength reduction methods offer options for multispectral camera usage in high-grown vegetable greenhouses. The application of automated platforms similar to the one tested in this study could be possible, but for successful pest detection under greenhouse conditions, algorithms should be further developed fully considering real-world conditions.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"156\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447932/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01273-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01273-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Hyperspectral imaging for pest symptom detection in bell pepper.
Background: The automation of pest monitoring is highly important for enhancing integrated pest management in practice. In this context, advanced technologies are becoming increasingly explored. Hyperspectral imaging (HSI) is a technique that has been used frequently in recent years in the context of natural science, and the successful detection of several fungal diseases and some pests has been reported. Various automated measures and image analysis methods offer great potential for enhancing monitoring in practice.
Results: In this study, the use of hyperspectral imaging over a wide spectrum from 400 to 2500 nm is investigated for noninvasive identification and the distinction of healthy plants and plants infested with Myzus persicae (Sulzer) and Frankliniella occidentalis (Pergande) on bell peppers. Pest infestations were carried out in netted areas, and images of single plants and dissected leaves were used to train the decision algorithm. Additionally, a specially modified spraying robot was converted into an autonomous platform used to carry the hyperspectral imaging system to take images under greenhouse conditions. The algorithm was developed via the XGBoost framework with gradient-boosted trees. Signals from specific wavelengths were found to be associated with the damage patterns of different insects. Under confined conditions, M. persicae and F. occidentalis infestations were distinguished from each other and from the uninfested control for single leaves. Differentiation was still possible when small whole plants were used. However, application under greenhouse conditions did not result in a good fit compared to the results of manual monitoring.
Conclusion: Hyperspectral images can be used to distinguish sucking pests on bell peppers on the basis of single leaves and intact potted bell pepper plants under controlled conditions. Wavelength reduction methods offer options for multispectral camera usage in high-grown vegetable greenhouses. The application of automated platforms similar to the one tested in this study could be possible, but for successful pest detection under greenhouse conditions, algorithms should be further developed fully considering real-world conditions.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.