Ahmet L Tek, Kiyotaka Nagaki, Hümeyra Yıldız Akkamış, Keisuke Tanaka, Hisato Kobayashi
{"title":"栽培大豆和野生原种中带有中心粒重复的染色体特异性条形码系统。","authors":"Ahmet L Tek, Kiyotaka Nagaki, Hümeyra Yıldız Akkamış, Keisuke Tanaka, Hisato Kobayashi","doi":"10.26508/lsa.202402802","DOIUrl":null,"url":null,"abstract":"<p><p>Wild soybean <i>Glycine soja</i> is the progenitor of cultivated soybean <i>Glycine max</i> Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90-92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447526/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chromosome-specific barcode system with centromeric repeat in cultivated soybean and wild progenitor.\",\"authors\":\"Ahmet L Tek, Kiyotaka Nagaki, Hümeyra Yıldız Akkamış, Keisuke Tanaka, Hisato Kobayashi\",\"doi\":\"10.26508/lsa.202402802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wild soybean <i>Glycine soja</i> is the progenitor of cultivated soybean <i>Glycine max</i> Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90-92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447526/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202402802\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202402802","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
野生大豆 Glycine soja 是栽培大豆 Glycine max 的祖先 尽管进行了广泛的基因组分析,但有关大豆功能中心粒的信息仍然有限。这些物种是研究驯化和育种中心粒动态的理想模型。我们利用中心粒特异性组蛋白 H3 蛋白进行了详细的染色质免疫沉淀分析,确定了两个不同的中心粒 DNA 序列,它们具有不寻常的重复单位,单体大小分别为 90-92 bp(CentGm-1)和 413 bp(CentGm-4),比标准核小体短和长。这两个序列毫无相似性的不相关DNA序列是两个物种功能性中心粒的一部分。我们的结果提供了在相同动点核蛋白作用下,栽培种和野生种中心粒特性的比较。每条染色体上可能存在的序列同质化现象,可以突出中心粒特性的进化保护机制,而不受驯化和育种的影响。此外,我们还利用 CentGm-4 单元开发了一种独特的条形码系统来追踪每条染色体。我们利用 CentGm-1 和 CentGm-4 超家族建立统一的中心粒组成模型的研究结果可能会对比较和进化基因组研究产生深远影响。
Chromosome-specific barcode system with centromeric repeat in cultivated soybean and wild progenitor.
Wild soybean Glycine soja is the progenitor of cultivated soybean Glycine max Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90-92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.