基于生理学的药代动力学模型,用于从大气中和通过衣物透皮吸收半挥发性有机化合物。

IF 1.5 4区 医学 Q4 ENVIRONMENTAL SCIENCES
Laurent Simon, Abishek Biswas
{"title":"基于生理学的药代动力学模型,用于从大气中和通过衣物透皮吸收半挥发性有机化合物。","authors":"Laurent Simon, Abishek Biswas","doi":"10.1080/15459624.2024.2398024","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on the semivolatile organic compound (SVOC) absorption through clothing and the skin. SVOCs are ubiquitous in daily life, in products like personal care items, plastics, and building materials. Understanding their permeation through the skin barrier is crucial for evaluating potential health risks of complete exposure. A PBPK model was developed to comprehend the dynamic interplay between SVOCs and human skin and to estimate tissue distribution throughout the body. The framework incorporated parameters such as skin permeability, physicochemical properties of the chemicals, and the impact of protective clothing and adsorbents. This model predicted the rate and extent of SVOC absorption under diverse scenarios. The PBPK predictions matched the experimental amount of mono-ethyl phthalate (MEP), a phthalate metabolite, when urine samples were collected for bare-skinned and clothed participants. Urine concentrations of MEP during a 6-hr exposure and for the next 48 hr show that clean clothing effectively decreased dermal uptake and the buildup of chemicals in the body. Additional removal of MEP was achieved through adsorption on activated carbon fabric. An increase in the maximum monolayer adsorption capacity or the Langmuir equilibrium constant further reduced the amount of MEP in the urine.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"778-787"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A physiologically based pharmacokinetic model for the transdermal uptake of semivolatile organic compounds from the atmosphere and through clothing.\",\"authors\":\"Laurent Simon, Abishek Biswas\",\"doi\":\"10.1080/15459624.2024.2398024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study focuses on the semivolatile organic compound (SVOC) absorption through clothing and the skin. SVOCs are ubiquitous in daily life, in products like personal care items, plastics, and building materials. Understanding their permeation through the skin barrier is crucial for evaluating potential health risks of complete exposure. A PBPK model was developed to comprehend the dynamic interplay between SVOCs and human skin and to estimate tissue distribution throughout the body. The framework incorporated parameters such as skin permeability, physicochemical properties of the chemicals, and the impact of protective clothing and adsorbents. This model predicted the rate and extent of SVOC absorption under diverse scenarios. The PBPK predictions matched the experimental amount of mono-ethyl phthalate (MEP), a phthalate metabolite, when urine samples were collected for bare-skinned and clothed participants. Urine concentrations of MEP during a 6-hr exposure and for the next 48 hr show that clean clothing effectively decreased dermal uptake and the buildup of chemicals in the body. Additional removal of MEP was achieved through adsorption on activated carbon fabric. An increase in the maximum monolayer adsorption capacity or the Langmuir equilibrium constant further reduced the amount of MEP in the urine.</p>\",\"PeriodicalId\":16599,\"journal\":{\"name\":\"Journal of Occupational and Environmental Hygiene\",\"volume\":\" \",\"pages\":\"778-787\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Occupational and Environmental Hygiene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15459624.2024.2398024\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational and Environmental Hygiene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15459624.2024.2398024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的重点是半挥发性有机化合物 (SVOC) 通过衣物和皮肤的吸收情况。SVOC 在日常生活中无处不在,存在于个人护理用品、塑料和建筑材料等产品中。了解它们通过皮肤屏障的渗透情况对于评估完全暴露于这些物质对健康造成的潜在风险至关重要。为了理解 SVOC 与人体皮肤之间的动态相互作用,并估计组织在全身的分布情况,我们开发了一个 PBPK 模型。该框架包含皮肤渗透性、化学品的物理化学特性以及防护服和吸附剂的影响等参数。该模型预测了不同情况下 SVOC 的吸收率和吸收范围。在收集裸露皮肤和穿衣参与者的尿样时,PBPK 预测结果与邻苯二甲酸酯代谢物邻苯二甲酸单乙酯(MEP)的实验量相吻合。暴露 6 小时和随后 48 小时内尿液中的 MEP 浓度表明,干净的衣物能有效减少皮肤吸收和化学品在体内的积聚。通过活性碳织物上的吸附作用,还能进一步去除甲胺磷。最大单层吸附容量或朗缪尔平衡常数的增加可进一步减少尿液中的甲胺磷含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A physiologically based pharmacokinetic model for the transdermal uptake of semivolatile organic compounds from the atmosphere and through clothing.

This study focuses on the semivolatile organic compound (SVOC) absorption through clothing and the skin. SVOCs are ubiquitous in daily life, in products like personal care items, plastics, and building materials. Understanding their permeation through the skin barrier is crucial for evaluating potential health risks of complete exposure. A PBPK model was developed to comprehend the dynamic interplay between SVOCs and human skin and to estimate tissue distribution throughout the body. The framework incorporated parameters such as skin permeability, physicochemical properties of the chemicals, and the impact of protective clothing and adsorbents. This model predicted the rate and extent of SVOC absorption under diverse scenarios. The PBPK predictions matched the experimental amount of mono-ethyl phthalate (MEP), a phthalate metabolite, when urine samples were collected for bare-skinned and clothed participants. Urine concentrations of MEP during a 6-hr exposure and for the next 48 hr show that clean clothing effectively decreased dermal uptake and the buildup of chemicals in the body. Additional removal of MEP was achieved through adsorption on activated carbon fabric. An increase in the maximum monolayer adsorption capacity or the Langmuir equilibrium constant further reduced the amount of MEP in the urine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Occupational and Environmental Hygiene
Journal of Occupational and Environmental Hygiene 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
3.30
自引率
10.00%
发文量
81
审稿时长
12-24 weeks
期刊介绍: The Journal of Occupational and Environmental Hygiene ( JOEH ) is a joint publication of the American Industrial Hygiene Association (AIHA®) and ACGIH®. The JOEH is a peer-reviewed journal devoted to enhancing the knowledge and practice of occupational and environmental hygiene and safety by widely disseminating research articles and applied studies of the highest quality. The JOEH provides a written medium for the communication of ideas, methods, processes, and research in core and emerging areas of occupational and environmental hygiene. Core domains include, but are not limited to: exposure assessment, control strategies, ergonomics, and risk analysis. Emerging domains include, but are not limited to: sensor technology, emergency preparedness and response, changing workforce, and management and analysis of "big" data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信