Xuejun Wang, Haiyang Ji, Yanting Yang, Dan Zhang, Xiehe Kong, Xiaoying Li, Hongna Li, Yunqiong Lu, Guang Yang, Jie Liu, Huangan Wu, Jue Hong, Xiaopeng Ma
{"title":"艾灸通过抑制MicroRNA-222-3p调控BRG1/Nrf2/HO-1通路,预防溃疡性结肠炎和结肠炎相关大肠癌肠上皮细胞的氧化应激反应","authors":"Xuejun Wang, Haiyang Ji, Yanting Yang, Dan Zhang, Xiehe Kong, Xiaoying Li, Hongna Li, Yunqiong Lu, Guang Yang, Jie Liu, Huangan Wu, Jue Hong, Xiaopeng Ma","doi":"10.1155/2024/8273732","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress is crucial in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). Intestinal epithelial cells (IECs) are an important component of the intestinal barrier. In previous studies, we have demonstrated that suppressing microRNA-222-3p (miR-222-3p) can protect against oxidative stress in IECs, which ameliorates colonic injuries in UC mice and prevents the conversion of UC to CAC. In this case, we hope to explore whether moxibustion can alleviate UC and CAC by inhibiting miR-222-3p based on mouse models of UC and CAC. After herb-partitioned moxibustion (HPM) intervention, the disease activity index (DAI) and colon macroscopic damage index (CMDI) were significantly reduced in UC mice, and the number and volume of intestinal tumors were decreased considerably in CAC mice. Meanwhile, we found that HPM suppressed miR-222-3p expression and upregulated the mRNA and protein expression of Brahma-related gene 1 (BRG1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), while inhibiting Kelch-like ECH-associated protein 1 (Keap1) expression in IECs of UC and CAC mice. With changes in reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and inflammatory cytokines interleukin (IL)-1<i>β</i> and tumor necrosis factor (TNF)-<i>α</i>), we verified that HPM protects against oxidative stress and inflammation in IECs of UC and CAC mice. The effect of HPM was inhibited in miR-222-3p overexpression mice, further demonstrating that the protective effect of HPM on UC and CAC mice was through inhibiting miR-222-3p. In summary, HPM regulates the BRG1/Nrf2/HO-1 pathway by inhibiting miR-222-3p to attenuate oxidative stress in IECs in UC and CAC.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2024 ","pages":"8273732"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446618/pdf/","citationCount":"0","resultStr":"{\"title\":\"Moxibustion Regulates the BRG1/Nrf2/HO-1 Pathway by Inhibiting MicroRNA-222-3p to Prevent Oxidative Stress in Intestinal Epithelial Cells in Ulcerative Colitis and Colitis-Associated Colorectal Cancer.\",\"authors\":\"Xuejun Wang, Haiyang Ji, Yanting Yang, Dan Zhang, Xiehe Kong, Xiaoying Li, Hongna Li, Yunqiong Lu, Guang Yang, Jie Liu, Huangan Wu, Jue Hong, Xiaopeng Ma\",\"doi\":\"10.1155/2024/8273732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative stress is crucial in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). Intestinal epithelial cells (IECs) are an important component of the intestinal barrier. In previous studies, we have demonstrated that suppressing microRNA-222-3p (miR-222-3p) can protect against oxidative stress in IECs, which ameliorates colonic injuries in UC mice and prevents the conversion of UC to CAC. In this case, we hope to explore whether moxibustion can alleviate UC and CAC by inhibiting miR-222-3p based on mouse models of UC and CAC. After herb-partitioned moxibustion (HPM) intervention, the disease activity index (DAI) and colon macroscopic damage index (CMDI) were significantly reduced in UC mice, and the number and volume of intestinal tumors were decreased considerably in CAC mice. Meanwhile, we found that HPM suppressed miR-222-3p expression and upregulated the mRNA and protein expression of Brahma-related gene 1 (BRG1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), while inhibiting Kelch-like ECH-associated protein 1 (Keap1) expression in IECs of UC and CAC mice. With changes in reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and inflammatory cytokines interleukin (IL)-1<i>β</i> and tumor necrosis factor (TNF)-<i>α</i>), we verified that HPM protects against oxidative stress and inflammation in IECs of UC and CAC mice. The effect of HPM was inhibited in miR-222-3p overexpression mice, further demonstrating that the protective effect of HPM on UC and CAC mice was through inhibiting miR-222-3p. In summary, HPM regulates the BRG1/Nrf2/HO-1 pathway by inhibiting miR-222-3p to attenuate oxidative stress in IECs in UC and CAC.</p>\",\"PeriodicalId\":15952,\"journal\":{\"name\":\"Journal of Immunology Research\",\"volume\":\"2024 \",\"pages\":\"8273732\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446618/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Immunology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8273732\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/8273732","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Moxibustion Regulates the BRG1/Nrf2/HO-1 Pathway by Inhibiting MicroRNA-222-3p to Prevent Oxidative Stress in Intestinal Epithelial Cells in Ulcerative Colitis and Colitis-Associated Colorectal Cancer.
Oxidative stress is crucial in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). Intestinal epithelial cells (IECs) are an important component of the intestinal barrier. In previous studies, we have demonstrated that suppressing microRNA-222-3p (miR-222-3p) can protect against oxidative stress in IECs, which ameliorates colonic injuries in UC mice and prevents the conversion of UC to CAC. In this case, we hope to explore whether moxibustion can alleviate UC and CAC by inhibiting miR-222-3p based on mouse models of UC and CAC. After herb-partitioned moxibustion (HPM) intervention, the disease activity index (DAI) and colon macroscopic damage index (CMDI) were significantly reduced in UC mice, and the number and volume of intestinal tumors were decreased considerably in CAC mice. Meanwhile, we found that HPM suppressed miR-222-3p expression and upregulated the mRNA and protein expression of Brahma-related gene 1 (BRG1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), while inhibiting Kelch-like ECH-associated protein 1 (Keap1) expression in IECs of UC and CAC mice. With changes in reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α), we verified that HPM protects against oxidative stress and inflammation in IECs of UC and CAC mice. The effect of HPM was inhibited in miR-222-3p overexpression mice, further demonstrating that the protective effect of HPM on UC and CAC mice was through inhibiting miR-222-3p. In summary, HPM regulates the BRG1/Nrf2/HO-1 pathway by inhibiting miR-222-3p to attenuate oxidative stress in IECs in UC and CAC.
期刊介绍:
Journal of Immunology Research is a peer-reviewed, Open Access journal that provides a platform for scientists and clinicians working in different areas of immunology and therapy. The journal publishes research articles, review articles, as well as clinical studies related to classical immunology, molecular immunology, clinical immunology, cancer immunology, transplantation immunology, immune pathology, immunodeficiency, autoimmune diseases, immune disorders, and immunotherapy.