Zichen Wang, Hiroyuki Hakozaki, Gillian McMahon, Marta Medina-Carbonero, Johannes Schöneberg
{"title":"LiveLattice:使用内存效率高的转换算法实现倾斜光片显微镜数据的实时可视化。","authors":"Zichen Wang, Hiroyuki Hakozaki, Gillian McMahon, Marta Medina-Carbonero, Johannes Schöneberg","doi":"10.1111/jmi.13358","DOIUrl":null,"url":null,"abstract":"<p><p>Light-sheet fluorescence microscopy (LSFM), a prominent fluorescence microscopy technique, offers enhanced temporal resolution for imaging biological samples in four dimensions (4D; x, y, z, time). Some of the most recent implementations, including inverted selective plane illumination microscopy (iSPIM) and lattice light-sheet microscopy (LLSM), move the sample substrate at an oblique angle relative to the detection objective's optical axis. Data from such tilted-sample-scan LSFMs require subsequent deskewing and rotation for proper visualisation and analysis. Such data preprocessing operations currently demand substantial memory allocation and pose significant computational challenges for large 4D dataset. The consequence is prolonged data preprocessing time compared to data acquisition time, which limits the ability for live-viewing the data as it is being captured by the microscope. To enable the fast preprocessing of large light-sheet microscopy datasets without significant hardware demand, we have developed WH-Transform, a memory-efficient transformation algorithm for deskewing and rotating the raw dataset, significantly reducing memory usage and the run time by more than 10-fold for large image stacks. Benchmarked against the conventional method and existing software, our approach demonstrates linear runtime compared to the cubic and quadratic runtime of the other approaches. Preprocessing a raw 3D volume of 2 GB (512 × 1536 × 600 pixels) can be accomplished in 3 s using a GPU with 24 GB of memory on a single workstation. Applied to 4D LLSM datasets of human hepatocytes, lung organoid tissue and brain organoid tissue, our method provided rapid and accurate preprocessing within seconds. Importantly, such preprocessing speeds now allow visualisation of the raw microscope data stream in real time, significantly improving the usability of LLSM in biology. In summary, this advancement holds transformative potential for light-sheet microscopy, enabling real-time, on-the-fly data preprocessing, visualisation, and analysis on standard workstations, thereby revolutionising biological imaging applications for LLSM and similar microscopes.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":"123-134"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733850/pdf/","citationCount":"0","resultStr":"{\"title\":\"LiveLattice: Real-time visualisation of tilted light-sheet microscopy data using a memory-efficient transformation algorithm.\",\"authors\":\"Zichen Wang, Hiroyuki Hakozaki, Gillian McMahon, Marta Medina-Carbonero, Johannes Schöneberg\",\"doi\":\"10.1111/jmi.13358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Light-sheet fluorescence microscopy (LSFM), a prominent fluorescence microscopy technique, offers enhanced temporal resolution for imaging biological samples in four dimensions (4D; x, y, z, time). Some of the most recent implementations, including inverted selective plane illumination microscopy (iSPIM) and lattice light-sheet microscopy (LLSM), move the sample substrate at an oblique angle relative to the detection objective's optical axis. Data from such tilted-sample-scan LSFMs require subsequent deskewing and rotation for proper visualisation and analysis. Such data preprocessing operations currently demand substantial memory allocation and pose significant computational challenges for large 4D dataset. The consequence is prolonged data preprocessing time compared to data acquisition time, which limits the ability for live-viewing the data as it is being captured by the microscope. To enable the fast preprocessing of large light-sheet microscopy datasets without significant hardware demand, we have developed WH-Transform, a memory-efficient transformation algorithm for deskewing and rotating the raw dataset, significantly reducing memory usage and the run time by more than 10-fold for large image stacks. Benchmarked against the conventional method and existing software, our approach demonstrates linear runtime compared to the cubic and quadratic runtime of the other approaches. Preprocessing a raw 3D volume of 2 GB (512 × 1536 × 600 pixels) can be accomplished in 3 s using a GPU with 24 GB of memory on a single workstation. Applied to 4D LLSM datasets of human hepatocytes, lung organoid tissue and brain organoid tissue, our method provided rapid and accurate preprocessing within seconds. Importantly, such preprocessing speeds now allow visualisation of the raw microscope data stream in real time, significantly improving the usability of LLSM in biology. In summary, this advancement holds transformative potential for light-sheet microscopy, enabling real-time, on-the-fly data preprocessing, visualisation, and analysis on standard workstations, thereby revolutionising biological imaging applications for LLSM and similar microscopes.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\" \",\"pages\":\"123-134\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.13358\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13358","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
LiveLattice: Real-time visualisation of tilted light-sheet microscopy data using a memory-efficient transformation algorithm.
Light-sheet fluorescence microscopy (LSFM), a prominent fluorescence microscopy technique, offers enhanced temporal resolution for imaging biological samples in four dimensions (4D; x, y, z, time). Some of the most recent implementations, including inverted selective plane illumination microscopy (iSPIM) and lattice light-sheet microscopy (LLSM), move the sample substrate at an oblique angle relative to the detection objective's optical axis. Data from such tilted-sample-scan LSFMs require subsequent deskewing and rotation for proper visualisation and analysis. Such data preprocessing operations currently demand substantial memory allocation and pose significant computational challenges for large 4D dataset. The consequence is prolonged data preprocessing time compared to data acquisition time, which limits the ability for live-viewing the data as it is being captured by the microscope. To enable the fast preprocessing of large light-sheet microscopy datasets without significant hardware demand, we have developed WH-Transform, a memory-efficient transformation algorithm for deskewing and rotating the raw dataset, significantly reducing memory usage and the run time by more than 10-fold for large image stacks. Benchmarked against the conventional method and existing software, our approach demonstrates linear runtime compared to the cubic and quadratic runtime of the other approaches. Preprocessing a raw 3D volume of 2 GB (512 × 1536 × 600 pixels) can be accomplished in 3 s using a GPU with 24 GB of memory on a single workstation. Applied to 4D LLSM datasets of human hepatocytes, lung organoid tissue and brain organoid tissue, our method provided rapid and accurate preprocessing within seconds. Importantly, such preprocessing speeds now allow visualisation of the raw microscope data stream in real time, significantly improving the usability of LLSM in biology. In summary, this advancement holds transformative potential for light-sheet microscopy, enabling real-time, on-the-fly data preprocessing, visualisation, and analysis on standard workstations, thereby revolutionising biological imaging applications for LLSM and similar microscopes.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.