Mauricio Torres, Brent Pederson, Hui Wang, Liangguang Leo Lin, Huilun Helen Wang, Amara Bugarin-Lapuz, Zhen Zhao, Ling Qi
{"title":"普肯耶细胞特异性 SEL1L-HRD1 内质网相关降解缺陷会导致小鼠进行性小脑共济失调。","authors":"Mauricio Torres, Brent Pederson, Hui Wang, Liangguang Leo Lin, Huilun Helen Wang, Amara Bugarin-Lapuz, Zhen Zhao, Ling Qi","doi":"10.1172/jci.insight.174725","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have identified multiple genetic variants of SEL1L-HRD1 endoplasmic reticulum-associated degradation (ERAD) in humans with neurodevelopmental disorders and locomotor dysfunctions, including ataxia. However, the relevance and importance of SEL1L-HRD1 ERAD in the pathogenesis of ataxia remain unexplored. Here, we showed that SEL1L deficiency in Purkinje cells leads to early-onset progressive cerebellar ataxia with progressive loss of Purkinje cells with age. Mice with Purkinje cell-specific deletion of SEL1L (Sel1LPcp2Cre) exhibited motor dysfunction beginning around 9 weeks of age. Transmission electron microscopy analysis revealed dilated ER and fragmented nuclei in Purkinje cells of adult Sel1LPcp2Cre mice, indicative of altered ER homeostasis and cell death. Finally, loss of Purkinje cells was associated with a secondary neurodegeneration of granular cells, as well as robust activation of astrocytes and proliferation of microglia, in the cerebellums of Sel1LPcp2Cre mice. These data demonstrate the pathophysiological importance of SEL1L-HRD1 ERAD in Purkinje cells in the pathogenesis of cerebellar ataxia.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563667/pdf/","citationCount":"0","resultStr":"{\"title\":\"Purkinje cell-specific deficiency in SEL1L-hrd1 endoplasmic reticulum-associated degradation causes progressive cerebellar ataxia in mice.\",\"authors\":\"Mauricio Torres, Brent Pederson, Hui Wang, Liangguang Leo Lin, Huilun Helen Wang, Amara Bugarin-Lapuz, Zhen Zhao, Ling Qi\",\"doi\":\"10.1172/jci.insight.174725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have identified multiple genetic variants of SEL1L-HRD1 endoplasmic reticulum-associated degradation (ERAD) in humans with neurodevelopmental disorders and locomotor dysfunctions, including ataxia. However, the relevance and importance of SEL1L-HRD1 ERAD in the pathogenesis of ataxia remain unexplored. Here, we showed that SEL1L deficiency in Purkinje cells leads to early-onset progressive cerebellar ataxia with progressive loss of Purkinje cells with age. Mice with Purkinje cell-specific deletion of SEL1L (Sel1LPcp2Cre) exhibited motor dysfunction beginning around 9 weeks of age. Transmission electron microscopy analysis revealed dilated ER and fragmented nuclei in Purkinje cells of adult Sel1LPcp2Cre mice, indicative of altered ER homeostasis and cell death. Finally, loss of Purkinje cells was associated with a secondary neurodegeneration of granular cells, as well as robust activation of astrocytes and proliferation of microglia, in the cerebellums of Sel1LPcp2Cre mice. These data demonstrate the pathophysiological importance of SEL1L-HRD1 ERAD in Purkinje cells in the pathogenesis of cerebellar ataxia.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563667/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.174725\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.174725","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
最近的研究发现,SEL1L-HRD1 ER相关降解(ERAD)的多种遗传变异存在于神经发育障碍和运动功能障碍(包括共济失调)患者中。然而,SEL1L-HRD1 ERAD在共济失调发病机制中的相关性和重要性仍有待探索。在这里,我们发现普金叶细胞中 SEL1L 的缺乏会导致早发的进行性小脑共济失调,并且随着年龄的增长,普金叶细胞会逐渐丧失。Purkinje细胞特异性缺失SEL1L(Sel1LPcp2Cre)的小鼠在9周龄左右开始出现运动功能障碍。透射电子显微镜(TEM)分析显示,成年 Sel1LPcp2Cre 小鼠的浦肯野细胞内存在扩张的 ER 和破碎的细胞核,这表明 ER 平衡发生了改变并导致细胞死亡。最后,在Sel1LPcp2Cre小鼠的小脑中,Purkinje细胞的丧失与颗粒细胞的继发性神经变性以及星形胶质细胞的强力激活和小胶质细胞的增殖有关。这些数据证明了浦肯野细胞中的SEL1L-HRD1 ERAD在小脑共济失调发病机制中的重要病理生理作用。
Purkinje cell-specific deficiency in SEL1L-hrd1 endoplasmic reticulum-associated degradation causes progressive cerebellar ataxia in mice.
Recent studies have identified multiple genetic variants of SEL1L-HRD1 endoplasmic reticulum-associated degradation (ERAD) in humans with neurodevelopmental disorders and locomotor dysfunctions, including ataxia. However, the relevance and importance of SEL1L-HRD1 ERAD in the pathogenesis of ataxia remain unexplored. Here, we showed that SEL1L deficiency in Purkinje cells leads to early-onset progressive cerebellar ataxia with progressive loss of Purkinje cells with age. Mice with Purkinje cell-specific deletion of SEL1L (Sel1LPcp2Cre) exhibited motor dysfunction beginning around 9 weeks of age. Transmission electron microscopy analysis revealed dilated ER and fragmented nuclei in Purkinje cells of adult Sel1LPcp2Cre mice, indicative of altered ER homeostasis and cell death. Finally, loss of Purkinje cells was associated with a secondary neurodegeneration of granular cells, as well as robust activation of astrocytes and proliferation of microglia, in the cerebellums of Sel1LPcp2Cre mice. These data demonstrate the pathophysiological importance of SEL1L-HRD1 ERAD in Purkinje cells in the pathogenesis of cerebellar ataxia.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.