{"title":"橄榄油厂废水处理综合工艺及其对微藻类培养的再评价。","authors":"Rihab Hachicha, Jihen Elleuch, Pascal Dubessay, Ridha Hachicha, Slim Abdelkafi, Philippe Michaud, Imen Fendri","doi":"10.1007/s10123-024-00600-z","DOIUrl":null,"url":null,"abstract":"<p><p>The olive oil industry generates 30 million cubic meters of olive mill wastewaters (OMWWs) annually. OMWWs are a major environmental concern in the Mediterranean region due to their high organic matter content, suspended solids, unpleasant odor, and dark color. The application of primary treatments such as coagulation-flocculation, adsorption, and hybrid systems combining coagulation-flocculation with adsorption has enabled to remove part of the organic matter, color, turbidity, and growth-inhibiting compounds from OMWWs. Among these methods, the hybrid system combining activated carbon and chitosan has proven to be the best removal efficiency. Subsequently, secondary treatment involving the cultivation of Chlorella sp. on OMWWs pretreated with chitosan achieved the highest maximal specific growth rate (0.513 ± 0.022 day⁻<sup>1</sup>) and biomass productivity (0.621 ± 0.021 g/L/day). Notably, the fatty acids (FA) profile produced by Chlorella sp. cells grown under these conditions differed, underscoring the potential of OMWWs as a microalgal growth medium. This innovative approach not only addresses environmental issues but also opens new avenues for sustainable bioproducts.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated processes for olive mill wastewater treatment and its revalorization for microalgae culture.\",\"authors\":\"Rihab Hachicha, Jihen Elleuch, Pascal Dubessay, Ridha Hachicha, Slim Abdelkafi, Philippe Michaud, Imen Fendri\",\"doi\":\"10.1007/s10123-024-00600-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The olive oil industry generates 30 million cubic meters of olive mill wastewaters (OMWWs) annually. OMWWs are a major environmental concern in the Mediterranean region due to their high organic matter content, suspended solids, unpleasant odor, and dark color. The application of primary treatments such as coagulation-flocculation, adsorption, and hybrid systems combining coagulation-flocculation with adsorption has enabled to remove part of the organic matter, color, turbidity, and growth-inhibiting compounds from OMWWs. Among these methods, the hybrid system combining activated carbon and chitosan has proven to be the best removal efficiency. Subsequently, secondary treatment involving the cultivation of Chlorella sp. on OMWWs pretreated with chitosan achieved the highest maximal specific growth rate (0.513 ± 0.022 day⁻<sup>1</sup>) and biomass productivity (0.621 ± 0.021 g/L/day). Notably, the fatty acids (FA) profile produced by Chlorella sp. cells grown under these conditions differed, underscoring the potential of OMWWs as a microalgal growth medium. This innovative approach not only addresses environmental issues but also opens new avenues for sustainable bioproducts.</p>\",\"PeriodicalId\":14318,\"journal\":{\"name\":\"International Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-024-00600-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-024-00600-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Integrated processes for olive mill wastewater treatment and its revalorization for microalgae culture.
The olive oil industry generates 30 million cubic meters of olive mill wastewaters (OMWWs) annually. OMWWs are a major environmental concern in the Mediterranean region due to their high organic matter content, suspended solids, unpleasant odor, and dark color. The application of primary treatments such as coagulation-flocculation, adsorption, and hybrid systems combining coagulation-flocculation with adsorption has enabled to remove part of the organic matter, color, turbidity, and growth-inhibiting compounds from OMWWs. Among these methods, the hybrid system combining activated carbon and chitosan has proven to be the best removal efficiency. Subsequently, secondary treatment involving the cultivation of Chlorella sp. on OMWWs pretreated with chitosan achieved the highest maximal specific growth rate (0.513 ± 0.022 day⁻1) and biomass productivity (0.621 ± 0.021 g/L/day). Notably, the fatty acids (FA) profile produced by Chlorella sp. cells grown under these conditions differed, underscoring the potential of OMWWs as a microalgal growth medium. This innovative approach not only addresses environmental issues but also opens new avenues for sustainable bioproducts.
期刊介绍:
International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials.
A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.