Shao Wang , Minglang Cai , Yan Wang , Lei Zhong , Yi Hu , Guihong Fu
{"title":"膳食丁酸梭菌代谢物缓解了高棉籽粕和菜籽粕膳食栉水母的生长、免疫反应和肠道健康状况的紊乱。","authors":"Shao Wang , Minglang Cai , Yan Wang , Lei Zhong , Yi Hu , Guihong Fu","doi":"10.1016/j.fsi.2024.109934","DOIUrl":null,"url":null,"abstract":"<div><div>Cottonseed meal and rapeseed meal exhibit a potential for fishmeal substitute in grass carp feed, while their excessive use contribute to growth decline and weakening immunity of aquatic animals. <em>Clostridium butyricum</em> metabolites (CBM) was recognized as a functional additive due to its antioxidant properties and maintenance of intestinal microbiota balance. CBM was added to a high of cottonseed and rapeseed meal diet to determine its effects on growth, immunity, and intestinal microbiota alterations of grass carp (<em>Ctenopharyngodon idella</em>) over 56 days. Eight hundred grass carp (mean weight, around 50 g) were randomized to five treatments and fed with the basic diet (CON), CBM0 diet (28 % cottonseed and 27 % rapeseed meal), and CBM diets (CBM0.5, CBM1, and CBM2, namely CBM0 diet supplemented with 500, 1000, and 2000 mg kg<sup>−1</sup> CBM). The results indicated that compared to CBM0, The ingestion of 1000 mg kg<sup>−1</sup> CBM diet by grass carp significantly promoted growth as measured by intestinal lipase activity, villus height, and muscle thickness. Moreover, accompanied by a decrease in intestine MDA content, and enhance antioxidant capacity by activating Keap1/Nrf2 signaling pathway to increase enzyme activities (SOD, CAT and T-AOC) and corresponding gene expression (<em>mnsod</em>, <em>cat</em>, <em>gsto</em> and <em>gpx1</em>) in the intestine of grass crap fed CBM1 diet. The dietary CBM1 diet increased serum levels of C3 and IgM, increased ACP activity and expression of the corresponding anti-inflammatory factors (<em>tgf-β1</em> and <em>il-15</em>), and suppressed the expression of pro-inflammatory factors (<em>tnf-α</em> and <em>il-12β</em>), resulting in enhanced immunity. The dietary CBM1 diet up-regulates gene expression of tight junction proteins (<em>zo-1</em>, <em>occludin</em>, <em>occludin7a</em> and <em>occludin-c</em>), coupled with the decreases in DAO and D-lactate contents, implying that the decreased mucosal permeability could be observed in the gut. The dietary CBM1 diet largely altered the intestinal microbial community, especially reducing the relative abundance of intestinal pathogenic bacteria (<em>Streptococcus</em> and <em>Actinomyces</em>). And it significantly increased the content of short-chain fatty acids (acetic acid, butyric acid, isobutyric acid, propionic acid and isovaleric acid). Taken above, dietary CBM supplementation improved growth in grass carp and attenuated the intestinal oxidative stress, inflammation and microflora dysbacteriosis caused by high proportions of cottonseed and rapeseed meal diets.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"154 ","pages":"Article 109934"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dietary Clostridium butyricum metabolites mitigated the disturbances in growth, immune response and gut health status of Ctenopharyngodon idella subjected to high cottonseed and rapeseed meal diet\",\"authors\":\"Shao Wang , Minglang Cai , Yan Wang , Lei Zhong , Yi Hu , Guihong Fu\",\"doi\":\"10.1016/j.fsi.2024.109934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cottonseed meal and rapeseed meal exhibit a potential for fishmeal substitute in grass carp feed, while their excessive use contribute to growth decline and weakening immunity of aquatic animals. <em>Clostridium butyricum</em> metabolites (CBM) was recognized as a functional additive due to its antioxidant properties and maintenance of intestinal microbiota balance. CBM was added to a high of cottonseed and rapeseed meal diet to determine its effects on growth, immunity, and intestinal microbiota alterations of grass carp (<em>Ctenopharyngodon idella</em>) over 56 days. Eight hundred grass carp (mean weight, around 50 g) were randomized to five treatments and fed with the basic diet (CON), CBM0 diet (28 % cottonseed and 27 % rapeseed meal), and CBM diets (CBM0.5, CBM1, and CBM2, namely CBM0 diet supplemented with 500, 1000, and 2000 mg kg<sup>−1</sup> CBM). The results indicated that compared to CBM0, The ingestion of 1000 mg kg<sup>−1</sup> CBM diet by grass carp significantly promoted growth as measured by intestinal lipase activity, villus height, and muscle thickness. Moreover, accompanied by a decrease in intestine MDA content, and enhance antioxidant capacity by activating Keap1/Nrf2 signaling pathway to increase enzyme activities (SOD, CAT and T-AOC) and corresponding gene expression (<em>mnsod</em>, <em>cat</em>, <em>gsto</em> and <em>gpx1</em>) in the intestine of grass crap fed CBM1 diet. The dietary CBM1 diet increased serum levels of C3 and IgM, increased ACP activity and expression of the corresponding anti-inflammatory factors (<em>tgf-β1</em> and <em>il-15</em>), and suppressed the expression of pro-inflammatory factors (<em>tnf-α</em> and <em>il-12β</em>), resulting in enhanced immunity. The dietary CBM1 diet up-regulates gene expression of tight junction proteins (<em>zo-1</em>, <em>occludin</em>, <em>occludin7a</em> and <em>occludin-c</em>), coupled with the decreases in DAO and D-lactate contents, implying that the decreased mucosal permeability could be observed in the gut. The dietary CBM1 diet largely altered the intestinal microbial community, especially reducing the relative abundance of intestinal pathogenic bacteria (<em>Streptococcus</em> and <em>Actinomyces</em>). And it significantly increased the content of short-chain fatty acids (acetic acid, butyric acid, isobutyric acid, propionic acid and isovaleric acid). Taken above, dietary CBM supplementation improved growth in grass carp and attenuated the intestinal oxidative stress, inflammation and microflora dysbacteriosis caused by high proportions of cottonseed and rapeseed meal diets.</div></div>\",\"PeriodicalId\":12127,\"journal\":{\"name\":\"Fish & shellfish immunology\",\"volume\":\"154 \",\"pages\":\"Article 109934\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish & shellfish immunology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050464824005795\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464824005795","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Dietary Clostridium butyricum metabolites mitigated the disturbances in growth, immune response and gut health status of Ctenopharyngodon idella subjected to high cottonseed and rapeseed meal diet
Cottonseed meal and rapeseed meal exhibit a potential for fishmeal substitute in grass carp feed, while their excessive use contribute to growth decline and weakening immunity of aquatic animals. Clostridium butyricum metabolites (CBM) was recognized as a functional additive due to its antioxidant properties and maintenance of intestinal microbiota balance. CBM was added to a high of cottonseed and rapeseed meal diet to determine its effects on growth, immunity, and intestinal microbiota alterations of grass carp (Ctenopharyngodon idella) over 56 days. Eight hundred grass carp (mean weight, around 50 g) were randomized to five treatments and fed with the basic diet (CON), CBM0 diet (28 % cottonseed and 27 % rapeseed meal), and CBM diets (CBM0.5, CBM1, and CBM2, namely CBM0 diet supplemented with 500, 1000, and 2000 mg kg−1 CBM). The results indicated that compared to CBM0, The ingestion of 1000 mg kg−1 CBM diet by grass carp significantly promoted growth as measured by intestinal lipase activity, villus height, and muscle thickness. Moreover, accompanied by a decrease in intestine MDA content, and enhance antioxidant capacity by activating Keap1/Nrf2 signaling pathway to increase enzyme activities (SOD, CAT and T-AOC) and corresponding gene expression (mnsod, cat, gsto and gpx1) in the intestine of grass crap fed CBM1 diet. The dietary CBM1 diet increased serum levels of C3 and IgM, increased ACP activity and expression of the corresponding anti-inflammatory factors (tgf-β1 and il-15), and suppressed the expression of pro-inflammatory factors (tnf-α and il-12β), resulting in enhanced immunity. The dietary CBM1 diet up-regulates gene expression of tight junction proteins (zo-1, occludin, occludin7a and occludin-c), coupled with the decreases in DAO and D-lactate contents, implying that the decreased mucosal permeability could be observed in the gut. The dietary CBM1 diet largely altered the intestinal microbial community, especially reducing the relative abundance of intestinal pathogenic bacteria (Streptococcus and Actinomyces). And it significantly increased the content of short-chain fatty acids (acetic acid, butyric acid, isobutyric acid, propionic acid and isovaleric acid). Taken above, dietary CBM supplementation improved growth in grass carp and attenuated the intestinal oxidative stress, inflammation and microflora dysbacteriosis caused by high proportions of cottonseed and rapeseed meal diets.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.