Rodolphe Vautherin, Hélène Métivier, Anne Reguer, Hassen Benbelkacem
{"title":"从垃圾焚烧烟气中回收硫的创新工艺:生产适销对路的亚硫酸氢钠溶液。","authors":"Rodolphe Vautherin, Hélène Métivier, Anne Reguer, Hassen Benbelkacem","doi":"10.1080/09593330.2024.2385066","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an innovative process for recovering sulphur from hazardous waste incineration flue gases, designed to produce a marketable sodium bisulphite solution while ensuring complete SO<sub>2</sub> removal. This new process is characterized by a double absorption strategy at two different pH levels. The first step, at an acidic pH, generates the desired bisulphite solution, while the second step, at a basic pH, produces the sulphite solution for recycling into the first step and ensures total SO<sub>2</sub> removal. The process's performance and feasibility were evaluated on a laboratory scale using a batch reactor with synthetic gas. The parametric study focused on the initial sulphite concentration in the absorption solution and the reactor temperature. A removal efficiency exceeding 95% was achieved across all initial sulphite concentrations and temperature ranges, when the pH was maintained above 6. At pH 5, where bisulphites are the predominant sulphur species, the removal efficiency remained substantial at approximately 70%. The oxidation of sulphites/bisulphites by oxygen in the flue gases was minimal, with less than 5% conversion to sulphate. Additionally, pH-controlled experiments were conducted to optimize plant start-up procedures. For the basic reactor, starting with water and adjusting the pH to 8 during SO<sub>2</sub> absorption effectively minimized sodium hydroxide consumption. In contrast, for the acidic reactor at pH 5, initiating the process with a concentrated sulphite solution resulted in more stable absorption rates. These findings underscore the process's potential for efficient sulphur recovery and highlight the importance of pH management in optimizing operational stability and chemical consumption.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1321-1332"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative process for sulphur recovery from waste incineration flue gases: production of marketable sodium bisulphite solution.\",\"authors\":\"Rodolphe Vautherin, Hélène Métivier, Anne Reguer, Hassen Benbelkacem\",\"doi\":\"10.1080/09593330.2024.2385066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an innovative process for recovering sulphur from hazardous waste incineration flue gases, designed to produce a marketable sodium bisulphite solution while ensuring complete SO<sub>2</sub> removal. This new process is characterized by a double absorption strategy at two different pH levels. The first step, at an acidic pH, generates the desired bisulphite solution, while the second step, at a basic pH, produces the sulphite solution for recycling into the first step and ensures total SO<sub>2</sub> removal. The process's performance and feasibility were evaluated on a laboratory scale using a batch reactor with synthetic gas. The parametric study focused on the initial sulphite concentration in the absorption solution and the reactor temperature. A removal efficiency exceeding 95% was achieved across all initial sulphite concentrations and temperature ranges, when the pH was maintained above 6. At pH 5, where bisulphites are the predominant sulphur species, the removal efficiency remained substantial at approximately 70%. The oxidation of sulphites/bisulphites by oxygen in the flue gases was minimal, with less than 5% conversion to sulphate. Additionally, pH-controlled experiments were conducted to optimize plant start-up procedures. For the basic reactor, starting with water and adjusting the pH to 8 during SO<sub>2</sub> absorption effectively minimized sodium hydroxide consumption. In contrast, for the acidic reactor at pH 5, initiating the process with a concentrated sulphite solution resulted in more stable absorption rates. These findings underscore the process's potential for efficient sulphur recovery and highlight the importance of pH management in optimizing operational stability and chemical consumption.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1321-1332\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2385066\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2385066","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Innovative process for sulphur recovery from waste incineration flue gases: production of marketable sodium bisulphite solution.
This study presents an innovative process for recovering sulphur from hazardous waste incineration flue gases, designed to produce a marketable sodium bisulphite solution while ensuring complete SO2 removal. This new process is characterized by a double absorption strategy at two different pH levels. The first step, at an acidic pH, generates the desired bisulphite solution, while the second step, at a basic pH, produces the sulphite solution for recycling into the first step and ensures total SO2 removal. The process's performance and feasibility were evaluated on a laboratory scale using a batch reactor with synthetic gas. The parametric study focused on the initial sulphite concentration in the absorption solution and the reactor temperature. A removal efficiency exceeding 95% was achieved across all initial sulphite concentrations and temperature ranges, when the pH was maintained above 6. At pH 5, where bisulphites are the predominant sulphur species, the removal efficiency remained substantial at approximately 70%. The oxidation of sulphites/bisulphites by oxygen in the flue gases was minimal, with less than 5% conversion to sulphate. Additionally, pH-controlled experiments were conducted to optimize plant start-up procedures. For the basic reactor, starting with water and adjusting the pH to 8 during SO2 absorption effectively minimized sodium hydroxide consumption. In contrast, for the acidic reactor at pH 5, initiating the process with a concentrated sulphite solution resulted in more stable absorption rates. These findings underscore the process's potential for efficient sulphur recovery and highlight the importance of pH management in optimizing operational stability and chemical consumption.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current