从垃圾焚烧烟气中回收硫的创新工艺:生产适销对路的亚硫酸氢钠溶液。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Environmental Technology Pub Date : 2025-04-01 Epub Date: 2024-10-03 DOI:10.1080/09593330.2024.2385066
Rodolphe Vautherin, Hélène Métivier, Anne Reguer, Hassen Benbelkacem
{"title":"从垃圾焚烧烟气中回收硫的创新工艺:生产适销对路的亚硫酸氢钠溶液。","authors":"Rodolphe Vautherin, Hélène Métivier, Anne Reguer, Hassen Benbelkacem","doi":"10.1080/09593330.2024.2385066","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an innovative process for recovering sulphur from hazardous waste incineration flue gases, designed to produce a marketable sodium bisulphite solution while ensuring complete SO<sub>2</sub> removal. This new process is characterized by a double absorption strategy at two different pH levels. The first step, at an acidic pH, generates the desired bisulphite solution, while the second step, at a basic pH, produces the sulphite solution for recycling into the first step and ensures total SO<sub>2</sub> removal. The process's performance and feasibility were evaluated on a laboratory scale using a batch reactor with synthetic gas. The parametric study focused on the initial sulphite concentration in the absorption solution and the reactor temperature. A removal efficiency exceeding 95% was achieved across all initial sulphite concentrations and temperature ranges, when the pH was maintained above 6. At pH 5, where bisulphites are the predominant sulphur species, the removal efficiency remained substantial at approximately 70%. The oxidation of sulphites/bisulphites by oxygen in the flue gases was minimal, with less than 5% conversion to sulphate. Additionally, pH-controlled experiments were conducted to optimize plant start-up procedures. For the basic reactor, starting with water and adjusting the pH to 8 during SO<sub>2</sub> absorption effectively minimized sodium hydroxide consumption. In contrast, for the acidic reactor at pH 5, initiating the process with a concentrated sulphite solution resulted in more stable absorption rates. These findings underscore the process's potential for efficient sulphur recovery and highlight the importance of pH management in optimizing operational stability and chemical consumption.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1321-1332"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative process for sulphur recovery from waste incineration flue gases: production of marketable sodium bisulphite solution.\",\"authors\":\"Rodolphe Vautherin, Hélène Métivier, Anne Reguer, Hassen Benbelkacem\",\"doi\":\"10.1080/09593330.2024.2385066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an innovative process for recovering sulphur from hazardous waste incineration flue gases, designed to produce a marketable sodium bisulphite solution while ensuring complete SO<sub>2</sub> removal. This new process is characterized by a double absorption strategy at two different pH levels. The first step, at an acidic pH, generates the desired bisulphite solution, while the second step, at a basic pH, produces the sulphite solution for recycling into the first step and ensures total SO<sub>2</sub> removal. The process's performance and feasibility were evaluated on a laboratory scale using a batch reactor with synthetic gas. The parametric study focused on the initial sulphite concentration in the absorption solution and the reactor temperature. A removal efficiency exceeding 95% was achieved across all initial sulphite concentrations and temperature ranges, when the pH was maintained above 6. At pH 5, where bisulphites are the predominant sulphur species, the removal efficiency remained substantial at approximately 70%. The oxidation of sulphites/bisulphites by oxygen in the flue gases was minimal, with less than 5% conversion to sulphate. Additionally, pH-controlled experiments were conducted to optimize plant start-up procedures. For the basic reactor, starting with water and adjusting the pH to 8 during SO<sub>2</sub> absorption effectively minimized sodium hydroxide consumption. In contrast, for the acidic reactor at pH 5, initiating the process with a concentrated sulphite solution resulted in more stable absorption rates. These findings underscore the process's potential for efficient sulphur recovery and highlight the importance of pH management in optimizing operational stability and chemical consumption.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1321-1332\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2385066\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2385066","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种从危险废物焚烧烟气中回收硫的创新工艺,旨在生产适销对路的亚硫酸氢钠溶液,同时确保完全去除二氧化硫。这种新工艺的特点是在两种不同的 pH 值水平下采用双重吸收策略。第一步在酸性 pH 值下生成所需的亚硫酸氢钠溶液,而第二步在碱性 pH 值下生成亚硫酸氢钠溶液,再循环到第一步,确保完全去除二氧化硫。该工艺的性能和可行性是在实验室规模上使用合成气批量反应器进行评估的。参数研究的重点是吸收溶液中亚硫酸盐的初始浓度和反应器的温度。当 pH 值保持在 6 以上时,在所有亚硫酸盐初始浓度和温度范围内,去除效率都超过了 95%。在 pH 值为 5 时,亚硫酸氢盐是主要的硫化物,去除效率仍然很高,约为 70%。烟气中的氧气对亚硫酸盐/亚硫酸氢盐的氧化作用很小,转化为硫酸盐的比例不到 5%。此外,还进行了 pH 值控制实验,以优化工厂启动程序。对于碱性反应器,在吸收二氧化硫时,先用水并将 pH 值调至 8,可有效地将氢氧化钠的消耗量降至最低。与此相反,对于 pH 值为 5 的酸性反应器,用浓亚硫酸盐溶液启动工艺可获得更稳定的吸收率。这些发现强调了该工艺高效回收硫的潜力,并突出了 pH 值管理在优化运行稳定性和化学品消耗方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative process for sulphur recovery from waste incineration flue gases: production of marketable sodium bisulphite solution.

This study presents an innovative process for recovering sulphur from hazardous waste incineration flue gases, designed to produce a marketable sodium bisulphite solution while ensuring complete SO2 removal. This new process is characterized by a double absorption strategy at two different pH levels. The first step, at an acidic pH, generates the desired bisulphite solution, while the second step, at a basic pH, produces the sulphite solution for recycling into the first step and ensures total SO2 removal. The process's performance and feasibility were evaluated on a laboratory scale using a batch reactor with synthetic gas. The parametric study focused on the initial sulphite concentration in the absorption solution and the reactor temperature. A removal efficiency exceeding 95% was achieved across all initial sulphite concentrations and temperature ranges, when the pH was maintained above 6. At pH 5, where bisulphites are the predominant sulphur species, the removal efficiency remained substantial at approximately 70%. The oxidation of sulphites/bisulphites by oxygen in the flue gases was minimal, with less than 5% conversion to sulphate. Additionally, pH-controlled experiments were conducted to optimize plant start-up procedures. For the basic reactor, starting with water and adjusting the pH to 8 during SO2 absorption effectively minimized sodium hydroxide consumption. In contrast, for the acidic reactor at pH 5, initiating the process with a concentrated sulphite solution resulted in more stable absorption rates. These findings underscore the process's potential for efficient sulphur recovery and highlight the importance of pH management in optimizing operational stability and chemical consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信