Sarah Abel, Xiu Ting Yiew, Shane Bateman, Allan R Willms
{"title":"基于压力的静脉输液治疗动力学模型。","authors":"Sarah Abel, Xiu Ting Yiew, Shane Bateman, Allan R Willms","doi":"10.1007/s11538-024-01362-5","DOIUrl":null,"url":null,"abstract":"<p><p>The kinetics of intravenous (IV) fluid therapy and how it affects the movement of fluids within humans and animals is an ongoing research topic. Clinical researchers have in the past used a mathematical model adopted from pharmacokinetics that attempts to mimic these kinetics. This linear model is based on the ideas that the body tries to maintain fluid levels in various compartments at some baseline targets and that fluid movement between compartments is driven by differences between the actual volumes and the targets. Here a nonlinear pressure-based model is introduced, where the driving force of fluid movement out of the blood stream is the pressure differences, both hydrostatic and oncotic, between the capillaries and the interstitial space. This model is, like the linear model, a coarse representation of fluid movement on the whole body scale, but, unlike the linear model, it is based on some of the body's biophysical processes. The abilities of both models to fit data from experiments on both awake and anesthetized cats was analyzed. The pressure-based model fit the data better than the linear model in all but one case, and was deemed statistically significantly better in a third of the cases.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pressure-Based Model of IV Fluid Therapy Kinetics.\",\"authors\":\"Sarah Abel, Xiu Ting Yiew, Shane Bateman, Allan R Willms\",\"doi\":\"10.1007/s11538-024-01362-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The kinetics of intravenous (IV) fluid therapy and how it affects the movement of fluids within humans and animals is an ongoing research topic. Clinical researchers have in the past used a mathematical model adopted from pharmacokinetics that attempts to mimic these kinetics. This linear model is based on the ideas that the body tries to maintain fluid levels in various compartments at some baseline targets and that fluid movement between compartments is driven by differences between the actual volumes and the targets. Here a nonlinear pressure-based model is introduced, where the driving force of fluid movement out of the blood stream is the pressure differences, both hydrostatic and oncotic, between the capillaries and the interstitial space. This model is, like the linear model, a coarse representation of fluid movement on the whole body scale, but, unlike the linear model, it is based on some of the body's biophysical processes. The abilities of both models to fit data from experiments on both awake and anesthetized cats was analyzed. The pressure-based model fit the data better than the linear model in all but one case, and was deemed statistically significantly better in a third of the cases.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01362-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01362-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A Pressure-Based Model of IV Fluid Therapy Kinetics.
The kinetics of intravenous (IV) fluid therapy and how it affects the movement of fluids within humans and animals is an ongoing research topic. Clinical researchers have in the past used a mathematical model adopted from pharmacokinetics that attempts to mimic these kinetics. This linear model is based on the ideas that the body tries to maintain fluid levels in various compartments at some baseline targets and that fluid movement between compartments is driven by differences between the actual volumes and the targets. Here a nonlinear pressure-based model is introduced, where the driving force of fluid movement out of the blood stream is the pressure differences, both hydrostatic and oncotic, between the capillaries and the interstitial space. This model is, like the linear model, a coarse representation of fluid movement on the whole body scale, but, unlike the linear model, it is based on some of the body's biophysical processes. The abilities of both models to fit data from experiments on both awake and anesthetized cats was analyzed. The pressure-based model fit the data better than the linear model in all but one case, and was deemed statistically significantly better in a third of the cases.