Takuya Kishi , Koji Kobayashi , Kazuo Sasagawa , Katsuya Sakimura , Takashi Minato , Misato Kida , Takahiro Hata , Yoshihiro Kitagawa , Chihiro Okuma , Takahisa Murata
{"title":"利用图像处理和机器学习自动分析小鼠的新型物体识别测试。","authors":"Takuya Kishi , Koji Kobayashi , Kazuo Sasagawa , Katsuya Sakimura , Takashi Minato , Misato Kida , Takahiro Hata , Yoshihiro Kitagawa , Chihiro Okuma , Takahisa Murata","doi":"10.1016/j.bbr.2024.115278","DOIUrl":null,"url":null,"abstract":"<div><div>The novel object recognition test (NORT) is one of the most commonly employed behavioral tests in experimental animals designed to evaluate an animal's interest in and recognition of novelty. However, manual procedures, which rely on researchers’ observations, prevent high throughput analysis. In this study, we developed an automated analysis method for NORT utilizing machine learning-assisted exploratory behavior detection. We recorded the exploratory behavior of the mice using a video camera. The coordinates of the mouse nose and tail base in recorded video files were detected using a pre-trained machine learning model, DeepLabCut. Each video was then segmented into frame images, which were categorized into \"exploratory,” or \"non-exploratory\" frames based on manual observation. Mouse feature vectors were calculated as vectors from the nose to the vertices of the object and were utilized for SVM training. The trained SVM effectively detected exploratory behaviors, showing a strong correlation with human observer assessments. Upon application to NORT, the duration of mouse exploratory behavior towards objects predicted by the SVM exhibited a significant correlation with the assessments made by human observers. The novelty discrimination index derived from the SVM predictions also aligned well with that from human observations.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"476 ","pages":"Article 115278"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated analysis of a novel object recognition test in mice using image processing and machine learning\",\"authors\":\"Takuya Kishi , Koji Kobayashi , Kazuo Sasagawa , Katsuya Sakimura , Takashi Minato , Misato Kida , Takahiro Hata , Yoshihiro Kitagawa , Chihiro Okuma , Takahisa Murata\",\"doi\":\"10.1016/j.bbr.2024.115278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The novel object recognition test (NORT) is one of the most commonly employed behavioral tests in experimental animals designed to evaluate an animal's interest in and recognition of novelty. However, manual procedures, which rely on researchers’ observations, prevent high throughput analysis. In this study, we developed an automated analysis method for NORT utilizing machine learning-assisted exploratory behavior detection. We recorded the exploratory behavior of the mice using a video camera. The coordinates of the mouse nose and tail base in recorded video files were detected using a pre-trained machine learning model, DeepLabCut. Each video was then segmented into frame images, which were categorized into \\\"exploratory,” or \\\"non-exploratory\\\" frames based on manual observation. Mouse feature vectors were calculated as vectors from the nose to the vertices of the object and were utilized for SVM training. The trained SVM effectively detected exploratory behaviors, showing a strong correlation with human observer assessments. Upon application to NORT, the duration of mouse exploratory behavior towards objects predicted by the SVM exhibited a significant correlation with the assessments made by human observers. The novelty discrimination index derived from the SVM predictions also aligned well with that from human observations.</div></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":\"476 \",\"pages\":\"Article 115278\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432824004340\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824004340","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Automated analysis of a novel object recognition test in mice using image processing and machine learning
The novel object recognition test (NORT) is one of the most commonly employed behavioral tests in experimental animals designed to evaluate an animal's interest in and recognition of novelty. However, manual procedures, which rely on researchers’ observations, prevent high throughput analysis. In this study, we developed an automated analysis method for NORT utilizing machine learning-assisted exploratory behavior detection. We recorded the exploratory behavior of the mice using a video camera. The coordinates of the mouse nose and tail base in recorded video files were detected using a pre-trained machine learning model, DeepLabCut. Each video was then segmented into frame images, which were categorized into "exploratory,” or "non-exploratory" frames based on manual observation. Mouse feature vectors were calculated as vectors from the nose to the vertices of the object and were utilized for SVM training. The trained SVM effectively detected exploratory behaviors, showing a strong correlation with human observer assessments. Upon application to NORT, the duration of mouse exploratory behavior towards objects predicted by the SVM exhibited a significant correlation with the assessments made by human observers. The novelty discrimination index derived from the SVM predictions also aligned well with that from human observations.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.