将高速接触稳定和化学强化一级处理相结合,提高污水中有机物和沼气的回收率。

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Minsu Song, Jihye Park, Joonyeob Lee, Hyokwan Bae
{"title":"将高速接触稳定和化学强化一级处理相结合,提高污水中有机物和沼气的回收率。","authors":"Minsu Song, Jihye Park, Joonyeob Lee, Hyokwan Bae","doi":"10.1016/j.biortech.2024.131560","DOIUrl":null,"url":null,"abstract":"<p><p>This study examined integrating high-rate contact stabilization (HRCS) and chemically enhanced primary treatment (CEPT) for wastewater to improve the carbon recovery rate (CRR). Enhancing chemical oxygen demand (COD) removal efficiency was hypothesized to improve the CRR. The evaluation covered serial HRCS-CEPT, serial CEPT-HRCS, and single-stage carbon recovery (Single-CR). The COD removal efficiencies for individual HRCS and CEPT were 50.3 % and 56.2 %, respectively. The serial CEPT-HRCS system failed in the HRCS process due to poor settling, resulting in microbial washout. However, the serial HRCS-CEPT system achieved the highest COD removal efficiency (84.5 %). The Single-CR system exhibited the highest CRR of 0.780 ± 0.083 g-COD<sub>CH4</sub>/g-COD<sub>inf</sub>, identifying it as the most promising process for energy-positive wastewater treatment. The selective pressure in the high-rate system resulted in a simplified and specialized bacterial community, mainly comprising microorganisms with high polyhydroxyalkanoate storage capacity, such as Lactococcus sp., Enterobacter sp., and Acinetobacter sp.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined high-rate contact stabilization and chemically enhanced primary treatment for enhanced recovery of organic matter and biogas from sewage.\",\"authors\":\"Minsu Song, Jihye Park, Joonyeob Lee, Hyokwan Bae\",\"doi\":\"10.1016/j.biortech.2024.131560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study examined integrating high-rate contact stabilization (HRCS) and chemically enhanced primary treatment (CEPT) for wastewater to improve the carbon recovery rate (CRR). Enhancing chemical oxygen demand (COD) removal efficiency was hypothesized to improve the CRR. The evaluation covered serial HRCS-CEPT, serial CEPT-HRCS, and single-stage carbon recovery (Single-CR). The COD removal efficiencies for individual HRCS and CEPT were 50.3 % and 56.2 %, respectively. The serial CEPT-HRCS system failed in the HRCS process due to poor settling, resulting in microbial washout. However, the serial HRCS-CEPT system achieved the highest COD removal efficiency (84.5 %). The Single-CR system exhibited the highest CRR of 0.780 ± 0.083 g-COD<sub>CH4</sub>/g-COD<sub>inf</sub>, identifying it as the most promising process for energy-positive wastewater treatment. The selective pressure in the high-rate system resulted in a simplified and specialized bacterial community, mainly comprising microorganisms with high polyhydroxyalkanoate storage capacity, such as Lactococcus sp., Enterobacter sp., and Acinetobacter sp.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2024.131560\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131560","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了如何将废水的高速接触稳定(HRCS)和化学强化一级处理(CEPT)结合起来,以提高碳回收率(CRR)。假设提高化学需氧量 (COD) 去除效率可改善 CRR。评估范围包括系列 HRCS-CEPT、系列 CEPT-HRCS 和单级碳回收(Single-CR)。单个 HRCS 和 CEPT 的 COD 去除率分别为 50.3% 和 56.2%。串联式 CEPT-HRCS 系统在 HRCS 过程中由于沉降效果不佳而失败,导致微生物被冲走。不过,串联 HRCS-CEPT 系统的 COD 去除效率最高(84.5%)。单-CR 系统的 CRR 最高,达到 0.780 ± 0.083 g-CODCH4/g-CODinf 的水平,因此被认为是最有前途的节能废水处理工艺。高速率系统中的选择性压力导致细菌群落的简化和专业化,主要由具有高聚羟基烷酸储存能力的微生物组成,如乳球菌属、肠杆菌属和不动杆菌属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined high-rate contact stabilization and chemically enhanced primary treatment for enhanced recovery of organic matter and biogas from sewage.

This study examined integrating high-rate contact stabilization (HRCS) and chemically enhanced primary treatment (CEPT) for wastewater to improve the carbon recovery rate (CRR). Enhancing chemical oxygen demand (COD) removal efficiency was hypothesized to improve the CRR. The evaluation covered serial HRCS-CEPT, serial CEPT-HRCS, and single-stage carbon recovery (Single-CR). The COD removal efficiencies for individual HRCS and CEPT were 50.3 % and 56.2 %, respectively. The serial CEPT-HRCS system failed in the HRCS process due to poor settling, resulting in microbial washout. However, the serial HRCS-CEPT system achieved the highest COD removal efficiency (84.5 %). The Single-CR system exhibited the highest CRR of 0.780 ± 0.083 g-CODCH4/g-CODinf, identifying it as the most promising process for energy-positive wastewater treatment. The selective pressure in the high-rate system resulted in a simplified and specialized bacterial community, mainly comprising microorganisms with high polyhydroxyalkanoate storage capacity, such as Lactococcus sp., Enterobacter sp., and Acinetobacter sp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信