Biman Bera , Upasi Goswami , Sujan Sk , Mrinal K. Bera
{"title":"羧基二咪唑(CDI)可在常温下促进羧酸和硫醇的直接瞬时硫代酯化反应。","authors":"Biman Bera , Upasi Goswami , Sujan Sk , Mrinal K. Bera","doi":"10.1039/d4ob01376j","DOIUrl":null,"url":null,"abstract":"<div><div>A simple yet efficient method is disclosed for the synthesis of a diverse range of thioester derivatives. Carbonyldiimidazole promoted esterification between a carboxylic acid and thiol was carried out at ambient temperature. The short reaction time, excellent yield, operational ease and wide functional group tolerance are the notable features of the reaction. Furthermore, the precise preparation of thioesters on a gram scale suggests the promising prospects for its industrial application.</div></div>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":"22 43","pages":"Pages 8570-8574"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonyldiimidazole (CDI) promoted direct and instantaneous thio-esterification of a carboxylic acid and thiol at ambient temperature†\",\"authors\":\"Biman Bera , Upasi Goswami , Sujan Sk , Mrinal K. Bera\",\"doi\":\"10.1039/d4ob01376j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A simple yet efficient method is disclosed for the synthesis of a diverse range of thioester derivatives. Carbonyldiimidazole promoted esterification between a carboxylic acid and thiol was carried out at ambient temperature. The short reaction time, excellent yield, operational ease and wide functional group tolerance are the notable features of the reaction. Furthermore, the precise preparation of thioesters on a gram scale suggests the promising prospects for its industrial application.</div></div>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\"22 43\",\"pages\":\"Pages 8570-8574\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1477052024008668\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1477052024008668","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Carbonyldiimidazole (CDI) promoted direct and instantaneous thio-esterification of a carboxylic acid and thiol at ambient temperature†
A simple yet efficient method is disclosed for the synthesis of a diverse range of thioester derivatives. Carbonyldiimidazole promoted esterification between a carboxylic acid and thiol was carried out at ambient temperature. The short reaction time, excellent yield, operational ease and wide functional group tolerance are the notable features of the reaction. Furthermore, the precise preparation of thioesters on a gram scale suggests the promising prospects for its industrial application.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.