Klaudia Kaniewska, Marcin Mackiewicz, Oleh Smutok, Mykhailo Gonchar, Evgeny Katz, Marcin Karbarz
{"title":"由葡萄糖浓度控制的微凝胶酶促药物释放。","authors":"Klaudia Kaniewska, Marcin Mackiewicz, Oleh Smutok, Mykhailo Gonchar, Evgeny Katz, Marcin Karbarz","doi":"10.1021/acsbiomaterials.4c01721","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to design microgels for controlled drug release via enzymatically generated pH changes in the presence of glucose. Modern medicine is focused on developing smart delivery systems with controlled release capabilities. In response to this demand, we present the synthesis, characterization, and enzymatically triggered drug release behavior of microgels based on poly(acrylic acid) modified with glucose oxidase (GOx) (p(AA-BIS)-GOx). TEM images revealed that the sizes of air-dried p(AA-BIS)-GOx microgels were approximately 130 nm. DLS measurements showed glucose-triggered microgel size changes upon glucose addition, which depended on buffer concentration. Enzymatically triggered drug release experiments using doxorubicin-loaded microgels with immobilized GOx demonstrated that drug release is strongly dependent on glucose and buffer concentration. The highest differences in release triggered by 5 and 25 mM glucose were observed in HEPES buffer at concentrations of 3 and 9 mM. Under these conditions, 80 and 52% of DOX were released with 25 mM glucose, while 47 and 28% of DOX were released with 5 mM glucose. The interstitial glucose concentration in a tumor ranges from ∼15 to 50 mM. Normal fasting blood glucose levels are about 5.5 mM, and postprandial (2 h after a meal) glucose levels should be less than 7.8 mM. The obtained results highlight the microgel's potential for drug delivery using the enhanced permeability and retention (EPR) effect, where drug release is controlled by enzymatically generated pH changes in response to elevated glucose concentrations.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480938/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enzymatically Triggered Drug Release from Microgels Controlled by Glucose Concentration.\",\"authors\":\"Klaudia Kaniewska, Marcin Mackiewicz, Oleh Smutok, Mykhailo Gonchar, Evgeny Katz, Marcin Karbarz\",\"doi\":\"10.1021/acsbiomaterials.4c01721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to design microgels for controlled drug release via enzymatically generated pH changes in the presence of glucose. Modern medicine is focused on developing smart delivery systems with controlled release capabilities. In response to this demand, we present the synthesis, characterization, and enzymatically triggered drug release behavior of microgels based on poly(acrylic acid) modified with glucose oxidase (GOx) (p(AA-BIS)-GOx). TEM images revealed that the sizes of air-dried p(AA-BIS)-GOx microgels were approximately 130 nm. DLS measurements showed glucose-triggered microgel size changes upon glucose addition, which depended on buffer concentration. Enzymatically triggered drug release experiments using doxorubicin-loaded microgels with immobilized GOx demonstrated that drug release is strongly dependent on glucose and buffer concentration. The highest differences in release triggered by 5 and 25 mM glucose were observed in HEPES buffer at concentrations of 3 and 9 mM. Under these conditions, 80 and 52% of DOX were released with 25 mM glucose, while 47 and 28% of DOX were released with 5 mM glucose. The interstitial glucose concentration in a tumor ranges from ∼15 to 50 mM. Normal fasting blood glucose levels are about 5.5 mM, and postprandial (2 h after a meal) glucose levels should be less than 7.8 mM. The obtained results highlight the microgel's potential for drug delivery using the enhanced permeability and retention (EPR) effect, where drug release is controlled by enzymatically generated pH changes in response to elevated glucose concentrations.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480938/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c01721\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01721","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Enzymatically Triggered Drug Release from Microgels Controlled by Glucose Concentration.
This study aims to design microgels for controlled drug release via enzymatically generated pH changes in the presence of glucose. Modern medicine is focused on developing smart delivery systems with controlled release capabilities. In response to this demand, we present the synthesis, characterization, and enzymatically triggered drug release behavior of microgels based on poly(acrylic acid) modified with glucose oxidase (GOx) (p(AA-BIS)-GOx). TEM images revealed that the sizes of air-dried p(AA-BIS)-GOx microgels were approximately 130 nm. DLS measurements showed glucose-triggered microgel size changes upon glucose addition, which depended on buffer concentration. Enzymatically triggered drug release experiments using doxorubicin-loaded microgels with immobilized GOx demonstrated that drug release is strongly dependent on glucose and buffer concentration. The highest differences in release triggered by 5 and 25 mM glucose were observed in HEPES buffer at concentrations of 3 and 9 mM. Under these conditions, 80 and 52% of DOX were released with 25 mM glucose, while 47 and 28% of DOX were released with 5 mM glucose. The interstitial glucose concentration in a tumor ranges from ∼15 to 50 mM. Normal fasting blood glucose levels are about 5.5 mM, and postprandial (2 h after a meal) glucose levels should be less than 7.8 mM. The obtained results highlight the microgel's potential for drug delivery using the enhanced permeability and retention (EPR) effect, where drug release is controlled by enzymatically generated pH changes in response to elevated glucose concentrations.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture