{"title":"用于高性能柔性超级电容器的水热 Ti3C2Tx MXene 和单宁酸复合材料的抗氧化性和电化学性能显著增强","authors":"Mingqing Lai, Chendong Zhao, Dianhui Wang, Ruixiang Gao, Ping Cai, Lixian Sun, Qinglong He, Hongliang Peng, Huanzhi Zhang, Fen Xu, Chaohao Hu, Kun Liang, Chuanfang John Zhang","doi":"10.1021/acsami.4c13838","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical performances of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene are severely restricted by the easy oxidation and restacking. Herein, tannic acid (TA) is introduced into Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> dispersion, and the mixed dispersion is further subjected to a simple hydrothermal treatment to prepare the hydrothermal Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> and TA composite (h-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@h-TA). Due to the decomposition of TA into gallic acid (GA), hydrothermal TA (h-TA) is a mixture of TA and GA. The strong interaction between h-TA and MXene mainly involves chemical interaction between the hydroxyl groups in h-TA and the surface/edge Ti atoms, along with numerous hydrogen bonds. The h-TA intercalation weakens MXene restacking and increases interlayer spacing, thereby improving ion transport pathways and accessibility. The chemical interaction between the hydroxyl groups of GA and the Ti atoms significantly enhances oxidation resistance and pseudocapacitive active sites. Therefore, the h-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@h-TA film electrode shows significantly enhanced capacitance (848 F·g<sup>-1</sup> at 1 A g<sup>-1</sup>) and cycling stability (100% retention after 20 000 cycles). Moreover, flexible sandwiched supercapacitors with symmetrical h-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@h-TA electrodes exhibit a high energy density of 30.1 Wh kg<sup>-1</sup> at a high power density of 300 W kg<sup>-1</sup>, outperforming those of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>-based film electrodes and sandwiched supercapacitors reported so far. The extrusion-printed microsupercapacitors with h-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@h-TA electrodes demonstrate high areal capacitance (135 mF cm<sup>-2</sup> at 5 mV s<sup>-1</sup>) along with energy storage performance (6.74 μWh cm<sup>-2</sup> at 506 μW cm<sup>-2</sup>) and cycling stability (98.8% retention after 41 460 cycles), all while maintaining excellent flexibility. These impressive results indicate the great application potential of the hydrothermal Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene and tannic acid composite in flexible energy storage devices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significantly Enhanced Oxidation Resistance and Electrochemical Performance of Hydrothermal Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene and Tannic Acid Composite for High-Performance Flexible Supercapacitors.\",\"authors\":\"Mingqing Lai, Chendong Zhao, Dianhui Wang, Ruixiang Gao, Ping Cai, Lixian Sun, Qinglong He, Hongliang Peng, Huanzhi Zhang, Fen Xu, Chaohao Hu, Kun Liang, Chuanfang John Zhang\",\"doi\":\"10.1021/acsami.4c13838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrochemical performances of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene are severely restricted by the easy oxidation and restacking. Herein, tannic acid (TA) is introduced into Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> dispersion, and the mixed dispersion is further subjected to a simple hydrothermal treatment to prepare the hydrothermal Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> and TA composite (h-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@h-TA). Due to the decomposition of TA into gallic acid (GA), hydrothermal TA (h-TA) is a mixture of TA and GA. The strong interaction between h-TA and MXene mainly involves chemical interaction between the hydroxyl groups in h-TA and the surface/edge Ti atoms, along with numerous hydrogen bonds. The h-TA intercalation weakens MXene restacking and increases interlayer spacing, thereby improving ion transport pathways and accessibility. The chemical interaction between the hydroxyl groups of GA and the Ti atoms significantly enhances oxidation resistance and pseudocapacitive active sites. Therefore, the h-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@h-TA film electrode shows significantly enhanced capacitance (848 F·g<sup>-1</sup> at 1 A g<sup>-1</sup>) and cycling stability (100% retention after 20 000 cycles). Moreover, flexible sandwiched supercapacitors with symmetrical h-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@h-TA electrodes exhibit a high energy density of 30.1 Wh kg<sup>-1</sup> at a high power density of 300 W kg<sup>-1</sup>, outperforming those of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>-based film electrodes and sandwiched supercapacitors reported so far. The extrusion-printed microsupercapacitors with h-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@h-TA electrodes demonstrate high areal capacitance (135 mF cm<sup>-2</sup> at 5 mV s<sup>-1</sup>) along with energy storage performance (6.74 μWh cm<sup>-2</sup> at 506 μW cm<sup>-2</sup>) and cycling stability (98.8% retention after 41 460 cycles), all while maintaining excellent flexibility. These impressive results indicate the great application potential of the hydrothermal Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene and tannic acid composite in flexible energy storage devices.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c13838\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13838","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
Ti3C2Tx MXene 的电化学性能受到易氧化和重堆叠的严重限制。在此,将单宁酸(TA)引入到 Ti3C2Tx 分散体中,并进一步对混合分散体进行简单的水热处理,制备出水热 Ti3C2Tx 和 TA 复合材料(h-Ti3C2Tx@h-TA)。由于 TA 分解成没食子酸(GA),水热 TA(h-TA)是 TA 和 GA 的混合物。h-TA 与 MXene 之间的强相互作用主要涉及 h-TA 中的羟基与表面/边缘 Ti 原子之间的化学作用以及大量氢键。h-TA 插层减弱了 MXene 的重新堆叠,增加了层间间距,从而改善了离子传输路径和可及性。GA 的羟基与钛原子之间的化学作用显著增强了抗氧化性和伪电容活性位点。因此,h-Ti3C2Tx@h-TA 薄膜电极的电容(1 A g-1 时为 848 F-g-1)和循环稳定性(20,000 次循环后保持 100%)都有显著提高。此外,采用对称 h-Ti3C2Tx@h-TA 电极的柔性夹层超级电容器在 300 W kg-1 的高功率密度下表现出 30.1 Wh kg-1 的高能量密度,优于目前已报道的基于 Ti3C2Tx 的薄膜电极和夹层超级电容器。采用 h-Ti3C2Tx@h-TA 电极的挤压印刷微型超级电容器不仅具有高面积电容(5 mV s-1 时为 135 mF cm-2)、储能性能(506 μW cm-2 时为 6.74 μWh cm-2)和循环稳定性(41 460 次循环后保持率为 98.8%),而且保持了极佳的柔韧性。这些令人印象深刻的结果表明,水热 Ti3C2Tx MXene 和单宁酸复合材料在柔性储能设备中具有巨大的应用潜力。
Significantly Enhanced Oxidation Resistance and Electrochemical Performance of Hydrothermal Ti3C2Tx MXene and Tannic Acid Composite for High-Performance Flexible Supercapacitors.
The electrochemical performances of Ti3C2Tx MXene are severely restricted by the easy oxidation and restacking. Herein, tannic acid (TA) is introduced into Ti3C2Tx dispersion, and the mixed dispersion is further subjected to a simple hydrothermal treatment to prepare the hydrothermal Ti3C2Tx and TA composite (h-Ti3C2Tx@h-TA). Due to the decomposition of TA into gallic acid (GA), hydrothermal TA (h-TA) is a mixture of TA and GA. The strong interaction between h-TA and MXene mainly involves chemical interaction between the hydroxyl groups in h-TA and the surface/edge Ti atoms, along with numerous hydrogen bonds. The h-TA intercalation weakens MXene restacking and increases interlayer spacing, thereby improving ion transport pathways and accessibility. The chemical interaction between the hydroxyl groups of GA and the Ti atoms significantly enhances oxidation resistance and pseudocapacitive active sites. Therefore, the h-Ti3C2Tx@h-TA film electrode shows significantly enhanced capacitance (848 F·g-1 at 1 A g-1) and cycling stability (100% retention after 20 000 cycles). Moreover, flexible sandwiched supercapacitors with symmetrical h-Ti3C2Tx@h-TA electrodes exhibit a high energy density of 30.1 Wh kg-1 at a high power density of 300 W kg-1, outperforming those of Ti3C2Tx-based film electrodes and sandwiched supercapacitors reported so far. The extrusion-printed microsupercapacitors with h-Ti3C2Tx@h-TA electrodes demonstrate high areal capacitance (135 mF cm-2 at 5 mV s-1) along with energy storage performance (6.74 μWh cm-2 at 506 μW cm-2) and cycling stability (98.8% retention after 41 460 cycles), all while maintaining excellent flexibility. These impressive results indicate the great application potential of the hydrothermal Ti3C2Tx MXene and tannic acid composite in flexible energy storage devices.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.