{"title":"磷酸化-缩合级联用于 C 核苷的生物催化合成","authors":"Andrej Ribar, Martin Pfeiffer, Bernd Nidetzky","doi":"10.1016/j.checat.2024.101127","DOIUrl":null,"url":null,"abstract":"<em>C</em>-nucleosides are important targets for synthesis as anti-infective agents and building blocks for therapeutic nucleic acids. Here, we show phosphorylation-condensation cascade reaction to produce pseudouridine 5′-phosphate (Ψ5P) from <span>d</span>-ribose (Rib) and uracil. Rib (∼1.0 M) was phosphorylated at O5 in aqueous acetyl phosphate (1.15 M) via ATP (5 mM) by coupled kinases. Using Ψ5P <em>C</em>-glycosidase, Rib5P intermediate (≥90% yield) was reacted with the mole equivalent of uracil, supplied as a solid, to give Ψ5P in quantitative yield. One-pot reaction optimized for reagent composition, automated pH control, and solid-liquid mass transfer yielded ∼2.2 g Ψ5P (productivity: 38 g/L/h) from 10-mL volume. Synthetic flexibility of the cascade reaction was shown with other pentoses (<span>d</span>-arabinose, 2-deoxy-Rib, <span>d</span>-xylose) and analogs of uracil (6-amino, 2-thio, 4-thio). Collectively, we show massive intensification (≥50-fold) of the pentose phosphorylation as well as the C–C bond-forming condensation step of the overall multienzyme cascade transformation for efficient <em>C</em>-nucleoside (monophosphate) synthesis.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"40 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorylation-condensation cascade for biocatalytic synthesis of C-nucleosides\",\"authors\":\"Andrej Ribar, Martin Pfeiffer, Bernd Nidetzky\",\"doi\":\"10.1016/j.checat.2024.101127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<em>C</em>-nucleosides are important targets for synthesis as anti-infective agents and building blocks for therapeutic nucleic acids. Here, we show phosphorylation-condensation cascade reaction to produce pseudouridine 5′-phosphate (Ψ5P) from <span>d</span>-ribose (Rib) and uracil. Rib (∼1.0 M) was phosphorylated at O5 in aqueous acetyl phosphate (1.15 M) via ATP (5 mM) by coupled kinases. Using Ψ5P <em>C</em>-glycosidase, Rib5P intermediate (≥90% yield) was reacted with the mole equivalent of uracil, supplied as a solid, to give Ψ5P in quantitative yield. One-pot reaction optimized for reagent composition, automated pH control, and solid-liquid mass transfer yielded ∼2.2 g Ψ5P (productivity: 38 g/L/h) from 10-mL volume. Synthetic flexibility of the cascade reaction was shown with other pentoses (<span>d</span>-arabinose, 2-deoxy-Rib, <span>d</span>-xylose) and analogs of uracil (6-amino, 2-thio, 4-thio). Collectively, we show massive intensification (≥50-fold) of the pentose phosphorylation as well as the C–C bond-forming condensation step of the overall multienzyme cascade transformation for efficient <em>C</em>-nucleoside (monophosphate) synthesis.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2024.101127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Phosphorylation-condensation cascade for biocatalytic synthesis of C-nucleosides
C-nucleosides are important targets for synthesis as anti-infective agents and building blocks for therapeutic nucleic acids. Here, we show phosphorylation-condensation cascade reaction to produce pseudouridine 5′-phosphate (Ψ5P) from d-ribose (Rib) and uracil. Rib (∼1.0 M) was phosphorylated at O5 in aqueous acetyl phosphate (1.15 M) via ATP (5 mM) by coupled kinases. Using Ψ5P C-glycosidase, Rib5P intermediate (≥90% yield) was reacted with the mole equivalent of uracil, supplied as a solid, to give Ψ5P in quantitative yield. One-pot reaction optimized for reagent composition, automated pH control, and solid-liquid mass transfer yielded ∼2.2 g Ψ5P (productivity: 38 g/L/h) from 10-mL volume. Synthetic flexibility of the cascade reaction was shown with other pentoses (d-arabinose, 2-deoxy-Rib, d-xylose) and analogs of uracil (6-amino, 2-thio, 4-thio). Collectively, we show massive intensification (≥50-fold) of the pentose phosphorylation as well as the C–C bond-forming condensation step of the overall multienzyme cascade transformation for efficient C-nucleoside (monophosphate) synthesis.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.