用于低温水溶锌电池的无有机溶剂一次溶壳

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2024-10-02 DOI:10.1016/j.chempr.2024.09.001
Lishan Geng, Jiashen Meng, Xuanpeng Wang, Weidong Wu, Kang Han, Meng Huang, Chunhua Han, Lu Wu, Jinghao Li, Liang Zhou, Liqiang Mai
{"title":"用于低温水溶锌电池的无有机溶剂一次溶壳","authors":"Lishan Geng, Jiashen Meng, Xuanpeng Wang, Weidong Wu, Kang Han, Meng Huang, Chunhua Han, Lu Wu, Jinghao Li, Liang Zhou, Liqiang Mai","doi":"10.1016/j.chempr.2024.09.001","DOIUrl":null,"url":null,"abstract":"Conventional hybrid aqueous electrolytes with solvated organic co-solvents encounter sluggish desolvation kinetics, especially under low-temperature conditions, due to the strong binding of organic solvents with Zn<sup>2+</sup>. Here, we develop a class of hybrid aqueous electrolytes with an organic-solvent-free primary solvation shell, favoring facile desolvation. As demonstrated by 1 M zinc acetate with dimethyl sulfoxide (DMSO) dipolar aprotic solvent, CH<sub>3</sub>COO<sup>−</sup> and H<sub>2</sub>O surround Zn<sup>2+</sup>, forming Zn<sup>2+</sup>(CH<sub>3</sub>COO<sup>−</sup>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> clusters. The enhanced hydrogen bonds between solvated CH<sub>3</sub>COO<sup>−</sup> and H<sub>2</sub>O hinder DMSO from replacing solvated H<sub>2</sub>O. This weak solvation structure facilitates fast charge transfer kinetics and rapid Zn<sup>2+</sup> flow through gradient solid electrolyte interphase. At −20°C, stable plating/stripping (5,600 h) and high Zn utilization (51%) are achieved. Furthermore, polyaniline||Zn batteries manifest low polarization (0.05 V), long cycling (8,800 cycles), and high rate. Importantly, this design strategy is generally extended to other hybrid electrolyte systems. This work represents advancements in electrolyte design for aqueous batteries.","PeriodicalId":268,"journal":{"name":"Chem","volume":"66 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic-solvent-free primary solvation shell for low-temperature aqueous zinc batteries\",\"authors\":\"Lishan Geng, Jiashen Meng, Xuanpeng Wang, Weidong Wu, Kang Han, Meng Huang, Chunhua Han, Lu Wu, Jinghao Li, Liang Zhou, Liqiang Mai\",\"doi\":\"10.1016/j.chempr.2024.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional hybrid aqueous electrolytes with solvated organic co-solvents encounter sluggish desolvation kinetics, especially under low-temperature conditions, due to the strong binding of organic solvents with Zn<sup>2+</sup>. Here, we develop a class of hybrid aqueous electrolytes with an organic-solvent-free primary solvation shell, favoring facile desolvation. As demonstrated by 1 M zinc acetate with dimethyl sulfoxide (DMSO) dipolar aprotic solvent, CH<sub>3</sub>COO<sup>−</sup> and H<sub>2</sub>O surround Zn<sup>2+</sup>, forming Zn<sup>2+</sup>(CH<sub>3</sub>COO<sup>−</sup>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> clusters. The enhanced hydrogen bonds between solvated CH<sub>3</sub>COO<sup>−</sup> and H<sub>2</sub>O hinder DMSO from replacing solvated H<sub>2</sub>O. This weak solvation structure facilitates fast charge transfer kinetics and rapid Zn<sup>2+</sup> flow through gradient solid electrolyte interphase. At −20°C, stable plating/stripping (5,600 h) and high Zn utilization (51%) are achieved. Furthermore, polyaniline||Zn batteries manifest low polarization (0.05 V), long cycling (8,800 cycles), and high rate. Importantly, this design strategy is generally extended to other hybrid electrolyte systems. This work represents advancements in electrolyte design for aqueous batteries.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.09.001\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.09.001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于有机溶剂与 Zn2+ 有很强的结合力,具有溶解有机助溶剂的传统混合水电解质会遇到缓慢的解溶解动力学问题,尤其是在低温条件下。在这里,我们开发了一类混合水电解质,它具有不含有机溶剂的主溶解壳,有利于快速解溶。正如 1 M 乙酸锌与二甲基亚砜(DMSO)双极性非沸腾溶剂所证明的那样,CH3COO- 和 H2O 包围着 Zn2+,形成 Zn2+(CH3COO-)2(H2O)4簇。溶解的 CH3COO- 和 H2O 之间增强的氢键阻碍了 DMSO 取代溶解的 H2O。这种弱溶解结构有利于快速电荷转移动力学和 Zn2+ 在梯度固体电解质相间的快速流动。在 -20°C 温度条件下,可实现稳定的电镀/剥离(5600 小时)和较高的锌利用率(51%)。此外,聚苯胺|||锌电池还具有极化率低(0.05 V)、循环时间长(8800 次)和高倍率的特点。重要的是,这种设计策略一般可扩展到其他混合电解质系统。这项工作代表了水电池电解质设计的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Organic-solvent-free primary solvation shell for low-temperature aqueous zinc batteries

Organic-solvent-free primary solvation shell for low-temperature aqueous zinc batteries
Conventional hybrid aqueous electrolytes with solvated organic co-solvents encounter sluggish desolvation kinetics, especially under low-temperature conditions, due to the strong binding of organic solvents with Zn2+. Here, we develop a class of hybrid aqueous electrolytes with an organic-solvent-free primary solvation shell, favoring facile desolvation. As demonstrated by 1 M zinc acetate with dimethyl sulfoxide (DMSO) dipolar aprotic solvent, CH3COO and H2O surround Zn2+, forming Zn2+(CH3COO)2(H2O)4 clusters. The enhanced hydrogen bonds between solvated CH3COO and H2O hinder DMSO from replacing solvated H2O. This weak solvation structure facilitates fast charge transfer kinetics and rapid Zn2+ flow through gradient solid electrolyte interphase. At −20°C, stable plating/stripping (5,600 h) and high Zn utilization (51%) are achieved. Furthermore, polyaniline||Zn batteries manifest low polarization (0.05 V), long cycling (8,800 cycles), and high rate. Importantly, this design strategy is generally extended to other hybrid electrolyte systems. This work represents advancements in electrolyte design for aqueous batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信