Yuqi Tian, Kai Yang, Yicong Wang, Jie Wang, Andrea S. Carlini, Zhinan Zhang, Yujun Deng, Jinyun Tan, Linfa Peng, Bo Yu, Zhongqin Lin
{"title":"用于血液透析患者高通量血管通路监测的自适应表皮血流传感器","authors":"Yuqi Tian, Kai Yang, Yicong Wang, Jie Wang, Andrea S. Carlini, Zhinan Zhang, Yujun Deng, Jinyun Tan, Linfa Peng, Bo Yu, Zhongqin Lin","doi":"10.1038/s41528-024-00342-y","DOIUrl":null,"url":null,"abstract":"Well-functioning vascular access (VA) is essential for hemodialysis treatment in patients with end-stage renal disease (ESRD). However, continuous and accurate monitoring of blood flow to assess high-flux VA during hospitalization or at home is not feasible for either clinical instruments or wearable sensors. Here, we report the design and preclinical validation of a high-precision, long-term, epidermal blood flow sensor that self-adapts to unavoidable sensor-mounting deviations on the skin and is compatible with individual tissue differences. Specifically, the technology is based on thermal dissipation of the skin, and improves the signal-to-error ratio surpassing 4 times when measuring high-flux blood (100–600 mL/min). In preclinical validation, the sensor is compared with the Doppler ultrasound and demonstrate a blood flow resolution of 10–50 mL/min. Furthermore, it is highly-integrated and wearable, measuring 36 × 50 mm2. The sensor paves the way for accurate, convenient, high-flux blood monitoring, offering significant potential to extend the lives of patients with ESRD.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-14"},"PeriodicalIF":12.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00342-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Self-adaptive epidermal blood flow sensor for high-flux vascular access monitoring of hemodialysis patients\",\"authors\":\"Yuqi Tian, Kai Yang, Yicong Wang, Jie Wang, Andrea S. Carlini, Zhinan Zhang, Yujun Deng, Jinyun Tan, Linfa Peng, Bo Yu, Zhongqin Lin\",\"doi\":\"10.1038/s41528-024-00342-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Well-functioning vascular access (VA) is essential for hemodialysis treatment in patients with end-stage renal disease (ESRD). However, continuous and accurate monitoring of blood flow to assess high-flux VA during hospitalization or at home is not feasible for either clinical instruments or wearable sensors. Here, we report the design and preclinical validation of a high-precision, long-term, epidermal blood flow sensor that self-adapts to unavoidable sensor-mounting deviations on the skin and is compatible with individual tissue differences. Specifically, the technology is based on thermal dissipation of the skin, and improves the signal-to-error ratio surpassing 4 times when measuring high-flux blood (100–600 mL/min). In preclinical validation, the sensor is compared with the Doppler ultrasound and demonstrate a blood flow resolution of 10–50 mL/min. Furthermore, it is highly-integrated and wearable, measuring 36 × 50 mm2. The sensor paves the way for accurate, convenient, high-flux blood monitoring, offering significant potential to extend the lives of patients with ESRD.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00342-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00342-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00342-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Self-adaptive epidermal blood flow sensor for high-flux vascular access monitoring of hemodialysis patients
Well-functioning vascular access (VA) is essential for hemodialysis treatment in patients with end-stage renal disease (ESRD). However, continuous and accurate monitoring of blood flow to assess high-flux VA during hospitalization or at home is not feasible for either clinical instruments or wearable sensors. Here, we report the design and preclinical validation of a high-precision, long-term, epidermal blood flow sensor that self-adapts to unavoidable sensor-mounting deviations on the skin and is compatible with individual tissue differences. Specifically, the technology is based on thermal dissipation of the skin, and improves the signal-to-error ratio surpassing 4 times when measuring high-flux blood (100–600 mL/min). In preclinical validation, the sensor is compared with the Doppler ultrasound and demonstrate a blood flow resolution of 10–50 mL/min. Furthermore, it is highly-integrated and wearable, measuring 36 × 50 mm2. The sensor paves the way for accurate, convenient, high-flux blood monitoring, offering significant potential to extend the lives of patients with ESRD.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.