Alina A. Platonova, Polina V. Aleksandrova, Anna I. Alekseeva, Sophya P. Kudryavtseva, Arsen K. Zotov, Kirill I. Zaytsev, Kirill B. Dolganov, Igor V. Reshetov, Vladimir N. Kurlov, Irina N. Dolganova
{"title":"使用带蓝宝石尖端的紧凑型光纤探头监测微循环紊乱期间组织特性的可行性。","authors":"Alina A. Platonova, Polina V. Aleksandrova, Anna I. Alekseeva, Sophya P. Kudryavtseva, Arsen K. Zotov, Kirill I. Zaytsev, Kirill B. Dolganov, Igor V. Reshetov, Vladimir N. Kurlov, Irina N. Dolganova","doi":"10.1002/jbio.202400368","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>One of the urgent tasks of modern medicine is to detect microcirculation disorder during surgery to avoid possible consequences like tissue hypoxia, ischemia, and necrosis. To address this issue, in this article, we propose a compact probe with sapphire tip and optical sensing based on the principle of spatially resolved diffuse reflectance analysis. It allows for intraoperative measurement of tissue effective attenuation coefficient and its alteration during the changes of tissue condition, caused by microcirculation disorder. The results of experimental studies using (1) a tissue-mimicking phantom based on lipid emulsion and hemoglobin and (2) a model of hindlimb ischemia performed in a rat demonstrated the ability to detect rapid changes of tissue attenuation confirming the feasibility of the probe to sense the stressful exposure. Due to a compact design of the probe, it could be useful for rather wide surgical operations and diagnostic purposes as an auxiliary instrument.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 11","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Monitoring Tissue Properties During Microcirculation Disorder Using a Compact Fiber-Based Probe With Sapphire Tip\",\"authors\":\"Alina A. Platonova, Polina V. Aleksandrova, Anna I. Alekseeva, Sophya P. Kudryavtseva, Arsen K. Zotov, Kirill I. Zaytsev, Kirill B. Dolganov, Igor V. Reshetov, Vladimir N. Kurlov, Irina N. Dolganova\",\"doi\":\"10.1002/jbio.202400368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>One of the urgent tasks of modern medicine is to detect microcirculation disorder during surgery to avoid possible consequences like tissue hypoxia, ischemia, and necrosis. To address this issue, in this article, we propose a compact probe with sapphire tip and optical sensing based on the principle of spatially resolved diffuse reflectance analysis. It allows for intraoperative measurement of tissue effective attenuation coefficient and its alteration during the changes of tissue condition, caused by microcirculation disorder. The results of experimental studies using (1) a tissue-mimicking phantom based on lipid emulsion and hemoglobin and (2) a model of hindlimb ischemia performed in a rat demonstrated the ability to detect rapid changes of tissue attenuation confirming the feasibility of the probe to sense the stressful exposure. Due to a compact design of the probe, it could be useful for rather wide surgical operations and diagnostic purposes as an auxiliary instrument.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"17 11\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400368\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400368","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Feasibility of Monitoring Tissue Properties During Microcirculation Disorder Using a Compact Fiber-Based Probe With Sapphire Tip
One of the urgent tasks of modern medicine is to detect microcirculation disorder during surgery to avoid possible consequences like tissue hypoxia, ischemia, and necrosis. To address this issue, in this article, we propose a compact probe with sapphire tip and optical sensing based on the principle of spatially resolved diffuse reflectance analysis. It allows for intraoperative measurement of tissue effective attenuation coefficient and its alteration during the changes of tissue condition, caused by microcirculation disorder. The results of experimental studies using (1) a tissue-mimicking phantom based on lipid emulsion and hemoglobin and (2) a model of hindlimb ischemia performed in a rat demonstrated the ability to detect rapid changes of tissue attenuation confirming the feasibility of the probe to sense the stressful exposure. Due to a compact design of the probe, it could be useful for rather wide surgical operations and diagnostic purposes as an auxiliary instrument.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.