{"title":"电压门控离子通道与睡眠","authors":"Yan Zhang, Jiawen Wu, Yuxian Zheng, Yangkun Xu, Ziqi Yu, Yong Ping","doi":"10.1007/s00232-024-00325-0","DOIUrl":null,"url":null,"abstract":"<p><p>Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca<sup>2+</sup>), sodium (Na<sup>+</sup>), and potassium (K<sup>+</sup>)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":"269-280"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage Gated Ion Channels and Sleep.\",\"authors\":\"Yan Zhang, Jiawen Wu, Yuxian Zheng, Yangkun Xu, Ziqi Yu, Yong Ping\",\"doi\":\"10.1007/s00232-024-00325-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca<sup>2+</sup>), sodium (Na<sup>+</sup>), and potassium (K<sup>+</sup>)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.</p>\",\"PeriodicalId\":50129,\"journal\":{\"name\":\"Journal of Membrane Biology\",\"volume\":\" \",\"pages\":\"269-280\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00232-024-00325-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-024-00325-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca2+), sodium (Na+), and potassium (K+)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.
期刊介绍:
The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function.
Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations.
While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.