使用标准 T1 模体验证超高对比度分减反转复原技术。

IF 2.7 4区 医学 Q2 BIOPHYSICS
NMR in Biomedicine Pub Date : 2024-12-01 Epub Date: 2024-10-02 DOI:10.1002/nbm.5269
Mark Bydder, Fadil Ali, Paul Condron, Daniel M Cornfeld, Gil Newburn, Eryn E Kwon, Maryam Tayebi, Miriam Scadeng, Tracy R Melzer, Samantha J Holdsworth, Graeme M Bydder
{"title":"使用标准 T1 模体验证超高对比度分减反转复原技术。","authors":"Mark Bydder, Fadil Ali, Paul Condron, Daniel M Cornfeld, Gil Newburn, Eryn E Kwon, Maryam Tayebi, Miriam Scadeng, Tracy R Melzer, Samantha J Holdsworth, Graeme M Bydder","doi":"10.1002/nbm.5269","DOIUrl":null,"url":null,"abstract":"<p><p>The divided subtracted inversion recovery (dSIR) is a high T<sub>1</sub> contrast technique that shows changes in white matter in patients with traumatic brain injury and hypoxic injury. The changes can be explained by small differences in T<sub>1</sub>; however, to date, there has been no independent validation of the technique using a standard reference. The present study develops the theory of the dSIR signal and performs validation using the NIST/ISMRM T<sub>1</sub> phantom. Non-idealities are explored, including the influence of noise bias and finite repetition time (TR), which leads to the introduction of an optimally efficient TR for inversion recovery acquisitions. Results show excellent agreement with theoretical calculations.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5269"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of an ultrahigh contrast divided subtracted inversion recovery technique using a standard T<sub>1</sub> phantom.\",\"authors\":\"Mark Bydder, Fadil Ali, Paul Condron, Daniel M Cornfeld, Gil Newburn, Eryn E Kwon, Maryam Tayebi, Miriam Scadeng, Tracy R Melzer, Samantha J Holdsworth, Graeme M Bydder\",\"doi\":\"10.1002/nbm.5269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The divided subtracted inversion recovery (dSIR) is a high T<sub>1</sub> contrast technique that shows changes in white matter in patients with traumatic brain injury and hypoxic injury. The changes can be explained by small differences in T<sub>1</sub>; however, to date, there has been no independent validation of the technique using a standard reference. The present study develops the theory of the dSIR signal and performs validation using the NIST/ISMRM T<sub>1</sub> phantom. Non-idealities are explored, including the influence of noise bias and finite repetition time (TR), which leads to the introduction of an optimally efficient TR for inversion recovery acquisitions. Results show excellent agreement with theoretical calculations.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5269\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5269\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5269","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

分割减法反转复原(dSIR)是一种高 T1 对比技术,可显示脑外伤和缺氧性损伤患者白质的变化。这些变化可以用 T1 的微小差异来解释;但迄今为止,还没有使用标准参考对该技术进行独立验证。本研究发展了 dSIR 信号的理论,并使用 NIST/ISMRM T1 模型进行了验证。研究探讨了非理想情况,包括噪声偏差和有限重复时间(TR)的影响,从而为反转恢复采集引入了最佳有效的 TR。结果显示与理论计算结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of an ultrahigh contrast divided subtracted inversion recovery technique using a standard T1 phantom.

The divided subtracted inversion recovery (dSIR) is a high T1 contrast technique that shows changes in white matter in patients with traumatic brain injury and hypoxic injury. The changes can be explained by small differences in T1; however, to date, there has been no independent validation of the technique using a standard reference. The present study develops the theory of the dSIR signal and performs validation using the NIST/ISMRM T1 phantom. Non-idealities are explored, including the influence of noise bias and finite repetition time (TR), which leads to the introduction of an optimally efficient TR for inversion recovery acquisitions. Results show excellent agreement with theoretical calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信