Nourhan O Shoier, Salah A Ghareib, Hend Kothayer, Amira Ebrahim Alsemeh, Shaimaa S El-Sayed
{"title":"维生素 D3 可减轻代谢综合征大鼠的肌病和代谢功能障碍:二肽基肽酶-4 的潜在作用。","authors":"Nourhan O Shoier, Salah A Ghareib, Hend Kothayer, Amira Ebrahim Alsemeh, Shaimaa S El-Sayed","doi":"10.1007/s00210-024-03439-3","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic syndrome is associated with vitamin D3 deficiency. This work aims to examine the efficacy of vitamin D3 in inhibiting MetS-induced myopathy and to determine whether the beneficial effects of vitamin D3 are mediated by the inhibition of dipeptidyl peptidase-4 (DPP-4). An in silico study investigated the potential effectiveness of vitamin D3 on the inhibition of the DPP-4 enzyme. An in vitro assay of the DPP-4 inhibitory effect of vitamin D3 was performed. In vivo and over 12 weeks, both diet (with 3% salt) and drinking water (with 10% fructose) were utilized to induce MetS. In the seventh week, rats received either vitamin D3, vildagliptin, a combination of both, or vehicles. Serum lipids, adipokines, glycemic indices, and glucagon-like peptide-1 (GLP-1), muscular glucose transporter type-4 (GLUT-4) content, DPP-4, adenosine monophosphate kinase (AMPK) activities, and Sudan Black B-stained lipids were assessed. Muscular reactive oxygen species (ROS), caspase-3, and desmin immunostaining were used to determine myopathy. MetS-induced metabolic dysfunction was ameliorated by vitamin D3, which also reduced intramuscular glycogen and lipid accumulation. This is demonstrated by the attenuation of MetS-induced myopathy by vitamin D3, decreased oxidative stress, increased desmin immuno-expression, and caspase-3 activity. Our in silico data demonstrated that vitamin D3 is capable of inhibiting DPP-4, which is further supported by biochemical findings. Vitamin D3 increased serum GLP-1, muscular AMPK activity, and GLUT-4 content, whereas the levels of muscular ROS were decreased in MetS. Vildagliptin and its combination with vitamin D3 yielded comparable results. It is suggested that the DPP-4 inhibitory potential of vitamin D3 is responsible for the amelioration of MetS-induced metabolic changes and myopathy.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":"3697-3715"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vitamin D3 mitigates myopathy and metabolic dysfunction in rats with metabolic syndrome: the potential role of dipeptidyl peptidase-4.\",\"authors\":\"Nourhan O Shoier, Salah A Ghareib, Hend Kothayer, Amira Ebrahim Alsemeh, Shaimaa S El-Sayed\",\"doi\":\"10.1007/s00210-024-03439-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic syndrome is associated with vitamin D3 deficiency. This work aims to examine the efficacy of vitamin D3 in inhibiting MetS-induced myopathy and to determine whether the beneficial effects of vitamin D3 are mediated by the inhibition of dipeptidyl peptidase-4 (DPP-4). An in silico study investigated the potential effectiveness of vitamin D3 on the inhibition of the DPP-4 enzyme. An in vitro assay of the DPP-4 inhibitory effect of vitamin D3 was performed. In vivo and over 12 weeks, both diet (with 3% salt) and drinking water (with 10% fructose) were utilized to induce MetS. In the seventh week, rats received either vitamin D3, vildagliptin, a combination of both, or vehicles. Serum lipids, adipokines, glycemic indices, and glucagon-like peptide-1 (GLP-1), muscular glucose transporter type-4 (GLUT-4) content, DPP-4, adenosine monophosphate kinase (AMPK) activities, and Sudan Black B-stained lipids were assessed. Muscular reactive oxygen species (ROS), caspase-3, and desmin immunostaining were used to determine myopathy. MetS-induced metabolic dysfunction was ameliorated by vitamin D3, which also reduced intramuscular glycogen and lipid accumulation. This is demonstrated by the attenuation of MetS-induced myopathy by vitamin D3, decreased oxidative stress, increased desmin immuno-expression, and caspase-3 activity. Our in silico data demonstrated that vitamin D3 is capable of inhibiting DPP-4, which is further supported by biochemical findings. Vitamin D3 increased serum GLP-1, muscular AMPK activity, and GLUT-4 content, whereas the levels of muscular ROS were decreased in MetS. Vildagliptin and its combination with vitamin D3 yielded comparable results. It is suggested that the DPP-4 inhibitory potential of vitamin D3 is responsible for the amelioration of MetS-induced metabolic changes and myopathy.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"3697-3715\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-024-03439-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03439-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Vitamin D3 mitigates myopathy and metabolic dysfunction in rats with metabolic syndrome: the potential role of dipeptidyl peptidase-4.
Metabolic syndrome is associated with vitamin D3 deficiency. This work aims to examine the efficacy of vitamin D3 in inhibiting MetS-induced myopathy and to determine whether the beneficial effects of vitamin D3 are mediated by the inhibition of dipeptidyl peptidase-4 (DPP-4). An in silico study investigated the potential effectiveness of vitamin D3 on the inhibition of the DPP-4 enzyme. An in vitro assay of the DPP-4 inhibitory effect of vitamin D3 was performed. In vivo and over 12 weeks, both diet (with 3% salt) and drinking water (with 10% fructose) were utilized to induce MetS. In the seventh week, rats received either vitamin D3, vildagliptin, a combination of both, or vehicles. Serum lipids, adipokines, glycemic indices, and glucagon-like peptide-1 (GLP-1), muscular glucose transporter type-4 (GLUT-4) content, DPP-4, adenosine monophosphate kinase (AMPK) activities, and Sudan Black B-stained lipids were assessed. Muscular reactive oxygen species (ROS), caspase-3, and desmin immunostaining were used to determine myopathy. MetS-induced metabolic dysfunction was ameliorated by vitamin D3, which also reduced intramuscular glycogen and lipid accumulation. This is demonstrated by the attenuation of MetS-induced myopathy by vitamin D3, decreased oxidative stress, increased desmin immuno-expression, and caspase-3 activity. Our in silico data demonstrated that vitamin D3 is capable of inhibiting DPP-4, which is further supported by biochemical findings. Vitamin D3 increased serum GLP-1, muscular AMPK activity, and GLUT-4 content, whereas the levels of muscular ROS were decreased in MetS. Vildagliptin and its combination with vitamin D3 yielded comparable results. It is suggested that the DPP-4 inhibitory potential of vitamin D3 is responsible for the amelioration of MetS-induced metabolic changes and myopathy.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.