Nahla Alsayd Bouqellah, Lina Jamil Mohamed Abdel-Hafez, Islam Yousif Mostafa, Ahmed Hassan Ibrahim Faraag
{"title":"研究源自枯草芽孢杆菌和肉豆蔻沙雷氏菌的转基因杂交几丁质酶的抗真菌潜力。","authors":"Nahla Alsayd Bouqellah, Lina Jamil Mohamed Abdel-Hafez, Islam Yousif Mostafa, Ahmed Hassan Ibrahim Faraag","doi":"10.1007/s10123-024-00591-x","DOIUrl":null,"url":null,"abstract":"<p><p>Chitinases are glycosyl hydrolase enzymes that break down chitin, an integral component of fungal cell walls. Bacteria such as Bacillus subtilis and Serratia marcescens produce chitinases with antifungal properties. In this study, we aimed to generate hybrid chitinase enzymes with enhanced antifungal activity by combining functional domains from native chitinases produced by B. subtilis and S. marcescens. Chitinase genes were cloned from both bacteria and fused together using overlap extension PCR. The hybrid constructs were expressed in E. coli and the recombinant enzymes purified. Gel electrophoresis and computational analysis confirmed the molecular weights and isoelectric points of the hybrid chitinases were intermediate between the parental enzymes. Antifungal assays demonstrated that the hybrid chitinases inhibited growth of the fungus Fusarium oxysporum significantly more than the native enzymes and also showed fungicidal activity against Candida albicans, Alternaria solani, and Rhizoctonia solani. The results indicate that hybrid bacterial chitinases are a promising approach to engineer novel antifungal proteins. This study provides insight into structure-function relationships of chitinases and strategies for generating biotherapeutics with enhanced bioactive properties. These hybrid chitinases result in a more potent and versatile antifungal agent.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the antifungal potential of genetically modified hybrid chitinase enzymes derived from Bacillus subtilis and Serratia marcescens.\",\"authors\":\"Nahla Alsayd Bouqellah, Lina Jamil Mohamed Abdel-Hafez, Islam Yousif Mostafa, Ahmed Hassan Ibrahim Faraag\",\"doi\":\"10.1007/s10123-024-00591-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chitinases are glycosyl hydrolase enzymes that break down chitin, an integral component of fungal cell walls. Bacteria such as Bacillus subtilis and Serratia marcescens produce chitinases with antifungal properties. In this study, we aimed to generate hybrid chitinase enzymes with enhanced antifungal activity by combining functional domains from native chitinases produced by B. subtilis and S. marcescens. Chitinase genes were cloned from both bacteria and fused together using overlap extension PCR. The hybrid constructs were expressed in E. coli and the recombinant enzymes purified. Gel electrophoresis and computational analysis confirmed the molecular weights and isoelectric points of the hybrid chitinases were intermediate between the parental enzymes. Antifungal assays demonstrated that the hybrid chitinases inhibited growth of the fungus Fusarium oxysporum significantly more than the native enzymes and also showed fungicidal activity against Candida albicans, Alternaria solani, and Rhizoctonia solani. The results indicate that hybrid bacterial chitinases are a promising approach to engineer novel antifungal proteins. This study provides insight into structure-function relationships of chitinases and strategies for generating biotherapeutics with enhanced bioactive properties. These hybrid chitinases result in a more potent and versatile antifungal agent.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-024-00591-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-024-00591-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Investigating the antifungal potential of genetically modified hybrid chitinase enzymes derived from Bacillus subtilis and Serratia marcescens.
Chitinases are glycosyl hydrolase enzymes that break down chitin, an integral component of fungal cell walls. Bacteria such as Bacillus subtilis and Serratia marcescens produce chitinases with antifungal properties. In this study, we aimed to generate hybrid chitinase enzymes with enhanced antifungal activity by combining functional domains from native chitinases produced by B. subtilis and S. marcescens. Chitinase genes were cloned from both bacteria and fused together using overlap extension PCR. The hybrid constructs were expressed in E. coli and the recombinant enzymes purified. Gel electrophoresis and computational analysis confirmed the molecular weights and isoelectric points of the hybrid chitinases were intermediate between the parental enzymes. Antifungal assays demonstrated that the hybrid chitinases inhibited growth of the fungus Fusarium oxysporum significantly more than the native enzymes and also showed fungicidal activity against Candida albicans, Alternaria solani, and Rhizoctonia solani. The results indicate that hybrid bacterial chitinases are a promising approach to engineer novel antifungal proteins. This study provides insight into structure-function relationships of chitinases and strategies for generating biotherapeutics with enhanced bioactive properties. These hybrid chitinases result in a more potent and versatile antifungal agent.