Zhiling Wang, Zhihang Zhuo, Yaqin Peng, Danping Xu
{"title":"基于MaxEnt模型预测不同气候情景下中国鹅掌楸Opisina arenosella Walker物种的地理分布潜力。","authors":"Zhiling Wang, Zhihang Zhuo, Yaqin Peng, Danping Xu","doi":"10.1017/S0007485324000464","DOIUrl":null,"url":null,"abstract":"<p><p>As global warming increases with the frequency of extreme weather, the distribution of species is inevitably affected. Among them, highly damaging invasive species are of particular concern. Being able to effectively predict the geographic distribution of invasive species and future distribution trends is a key entry point for their control. <i>Opisina arenosella</i> Walker is an invasive species, and its ability to live on the backs of foliage and generate canals to hide adds to the difficulty of control. In this paper, the current and future distributions of <i>O. arenosella</i> under three typical emission scenarios in 2050 and 2090 are projected based on the MaxEnt model combining 19 bioclimatic variables. Filter through the variables to find the four key environment variables: BIO 1, BIO 6, BIO 11 and BIO 4. The results show that <i>O. arenosella</i> is distributed only in the eight provinces of Tibet, Yunnan, Fujian, Guangxi, Taiwan, Guangdong, Hong Kong and Hainan in the southeastern region. Its high suitability area is concentrated in Taiwan and Hainan. In the long run, highly suitable areas will continue to increase in size, while moderately suitable areas and poorly suitable areas will decrease to varying degrees. This paper aims to provide theoretical references for the control of <i>O. arenosella</i>.</p>","PeriodicalId":9370,"journal":{"name":"Bulletin of Entomological Research","volume":" ","pages":"682-690"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the geographical potential distribution of species <i>Opisina arenosella</i> Walker in China under different climate scenarios based on the MaxEnt model.\",\"authors\":\"Zhiling Wang, Zhihang Zhuo, Yaqin Peng, Danping Xu\",\"doi\":\"10.1017/S0007485324000464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As global warming increases with the frequency of extreme weather, the distribution of species is inevitably affected. Among them, highly damaging invasive species are of particular concern. Being able to effectively predict the geographic distribution of invasive species and future distribution trends is a key entry point for their control. <i>Opisina arenosella</i> Walker is an invasive species, and its ability to live on the backs of foliage and generate canals to hide adds to the difficulty of control. In this paper, the current and future distributions of <i>O. arenosella</i> under three typical emission scenarios in 2050 and 2090 are projected based on the MaxEnt model combining 19 bioclimatic variables. Filter through the variables to find the four key environment variables: BIO 1, BIO 6, BIO 11 and BIO 4. The results show that <i>O. arenosella</i> is distributed only in the eight provinces of Tibet, Yunnan, Fujian, Guangxi, Taiwan, Guangdong, Hong Kong and Hainan in the southeastern region. Its high suitability area is concentrated in Taiwan and Hainan. In the long run, highly suitable areas will continue to increase in size, while moderately suitable areas and poorly suitable areas will decrease to varying degrees. This paper aims to provide theoretical references for the control of <i>O. arenosella</i>.</p>\",\"PeriodicalId\":9370,\"journal\":{\"name\":\"Bulletin of Entomological Research\",\"volume\":\" \",\"pages\":\"682-690\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Entomological Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1017/S0007485324000464\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Entomological Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1017/S0007485324000464","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Predicting the geographical potential distribution of species Opisina arenosella Walker in China under different climate scenarios based on the MaxEnt model.
As global warming increases with the frequency of extreme weather, the distribution of species is inevitably affected. Among them, highly damaging invasive species are of particular concern. Being able to effectively predict the geographic distribution of invasive species and future distribution trends is a key entry point for their control. Opisina arenosella Walker is an invasive species, and its ability to live on the backs of foliage and generate canals to hide adds to the difficulty of control. In this paper, the current and future distributions of O. arenosella under three typical emission scenarios in 2050 and 2090 are projected based on the MaxEnt model combining 19 bioclimatic variables. Filter through the variables to find the four key environment variables: BIO 1, BIO 6, BIO 11 and BIO 4. The results show that O. arenosella is distributed only in the eight provinces of Tibet, Yunnan, Fujian, Guangxi, Taiwan, Guangdong, Hong Kong and Hainan in the southeastern region. Its high suitability area is concentrated in Taiwan and Hainan. In the long run, highly suitable areas will continue to increase in size, while moderately suitable areas and poorly suitable areas will decrease to varying degrees. This paper aims to provide theoretical references for the control of O. arenosella.
期刊介绍:
Established in 1910, the internationally recognised Bulletin of Entomological Research aims to further global knowledge of entomology through the generalisation of research findings rather than providing more entomological exceptions. The Bulletin publishes high quality and original research papers, ''critiques'' and review articles concerning insects or other arthropods of economic importance in agriculture, forestry, stored products, biological control, medicine, animal health and natural resource management. The scope of papers addresses the biology, ecology, behaviour, physiology and systematics of individuals and populations, with a particular emphasis upon the major current and emerging pests of agriculture, horticulture and forestry, and vectors of human and animal diseases. This includes the interactions between species (plants, hosts for parasites, natural enemies and whole communities), novel methodological developments, including molecular biology, in an applied context. The Bulletin does not publish the results of pesticide testing or traditional taxonomic revisions.