Jingyi Li, Ulrich Brose, Benjamin Rosenbaum, Remo Ryser, Emilio Berti
{"title":"解码信息流和感官污染:了解物种相互作用的系统框架","authors":"Jingyi Li, Ulrich Brose, Benjamin Rosenbaum, Remo Ryser, Emilio Berti","doi":"10.1111/ele.14522","DOIUrl":null,"url":null,"abstract":"<p>Information transmission among species is a fundamental aspect of natural ecosystems that faces significant disruption from rapidly growing anthropogenic sensory pollution. Understanding the constraints of information flow on species' trophic interactions is often overlooked due to a limited comprehension of the mechanisms of information transmission and the absence of adequate analytical tools. To fill this gap, we developed a sensory information-constrained functional response (IFR) framework, which accounts for the information transmission between predator and prey. Through empirical evaluation, the IFR provided a biologically grounded explanation for the systematic variation of functional responses. Specifically, it posits that the variation of different functional-response shapes, associated with community stability, is attributable to limitations in sensory information transmission among species. This not only deepens our mechanistic understanding of species interactions but also elucidates how anthropogenic activities are reshaping species interactions and community dynamics by disrupting information exchange through sensory pollution.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14522","citationCount":"0","resultStr":"{\"title\":\"Decoding Information Flow and Sensory Pollution: A Systematic Framework for Understanding Species Interactions\",\"authors\":\"Jingyi Li, Ulrich Brose, Benjamin Rosenbaum, Remo Ryser, Emilio Berti\",\"doi\":\"10.1111/ele.14522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Information transmission among species is a fundamental aspect of natural ecosystems that faces significant disruption from rapidly growing anthropogenic sensory pollution. Understanding the constraints of information flow on species' trophic interactions is often overlooked due to a limited comprehension of the mechanisms of information transmission and the absence of adequate analytical tools. To fill this gap, we developed a sensory information-constrained functional response (IFR) framework, which accounts for the information transmission between predator and prey. Through empirical evaluation, the IFR provided a biologically grounded explanation for the systematic variation of functional responses. Specifically, it posits that the variation of different functional-response shapes, associated with community stability, is attributable to limitations in sensory information transmission among species. This not only deepens our mechanistic understanding of species interactions but also elucidates how anthropogenic activities are reshaping species interactions and community dynamics by disrupting information exchange through sensory pollution.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14522\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14522\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14522","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Decoding Information Flow and Sensory Pollution: A Systematic Framework for Understanding Species Interactions
Information transmission among species is a fundamental aspect of natural ecosystems that faces significant disruption from rapidly growing anthropogenic sensory pollution. Understanding the constraints of information flow on species' trophic interactions is often overlooked due to a limited comprehension of the mechanisms of information transmission and the absence of adequate analytical tools. To fill this gap, we developed a sensory information-constrained functional response (IFR) framework, which accounts for the information transmission between predator and prey. Through empirical evaluation, the IFR provided a biologically grounded explanation for the systematic variation of functional responses. Specifically, it posits that the variation of different functional-response shapes, associated with community stability, is attributable to limitations in sensory information transmission among species. This not only deepens our mechanistic understanding of species interactions but also elucidates how anthropogenic activities are reshaping species interactions and community dynamics by disrupting information exchange through sensory pollution.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.