一步碳化合成从农业废弃物花生壳中提取的 N、S 共掺碳材料,用于高性能对称超级电容器。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xiaoyang Cheng, Lihua Zhang, Lingyan Li, Xinran Li, Hao Wu, Jinfeng Zheng, Jiarong Yao, Guifang Li
{"title":"一步碳化合成从农业废弃物花生壳中提取的 N、S 共掺碳材料,用于高性能对称超级电容器。","authors":"Xiaoyang Cheng, Lihua Zhang, Lingyan Li, Xinran Li, Hao Wu, Jinfeng Zheng, Jiarong Yao, Guifang Li","doi":"10.1002/chem.202402597","DOIUrl":null,"url":null,"abstract":"<p><p>Biomass carbon has the advantages of wide source, low cost and environmental protection, and has been widely used in the field of electrochemical energy storage. In this work, N and S co-doped carbon materials were prepared by using peanut shell as carbon source and thiourea as activator. When the peanut shell and activator were 2 g and 4 g, respectively, the prepared NSPC-4 had the largest specific surface area and special pore structure. Elemental analysis showed that the activator introduced more N, S and O atoms to the carbon material, and more heteroatoms helped to improve the surface structure of the carbon material and provide additional pseudocapacitance. In addition, NSPC-4 contains a short-range ordered graphite structure, which can provide excellent electrical conductivity. The electrochemical test results show that NSPC-4 has the largest specific capacitance. When the mass of the activator is higher than or below 4 g, the electrochemical performance of the carbon material will be reduced. The symmetric supercapacitor (SSC) assembled by NSPC-4 has an energy density of 8.3 Wh kg-1 when the power density is 350 W kg-1. The synthesis method is not only simple, green and economical, but also has important application value.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Step Carbonization Synthesis of N, S Co-Doped Carbon Materials Derived from Agricultural Waste Peanut Shells for High-Performance Symmetric Supercapacitors.\",\"authors\":\"Xiaoyang Cheng, Lihua Zhang, Lingyan Li, Xinran Li, Hao Wu, Jinfeng Zheng, Jiarong Yao, Guifang Li\",\"doi\":\"10.1002/chem.202402597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomass carbon has the advantages of wide source, low cost and environmental protection, and has been widely used in the field of electrochemical energy storage. In this work, N and S co-doped carbon materials were prepared by using peanut shell as carbon source and thiourea as activator. When the peanut shell and activator were 2 g and 4 g, respectively, the prepared NSPC-4 had the largest specific surface area and special pore structure. Elemental analysis showed that the activator introduced more N, S and O atoms to the carbon material, and more heteroatoms helped to improve the surface structure of the carbon material and provide additional pseudocapacitance. In addition, NSPC-4 contains a short-range ordered graphite structure, which can provide excellent electrical conductivity. The electrochemical test results show that NSPC-4 has the largest specific capacitance. When the mass of the activator is higher than or below 4 g, the electrochemical performance of the carbon material will be reduced. The symmetric supercapacitor (SSC) assembled by NSPC-4 has an energy density of 8.3 Wh kg-1 when the power density is 350 W kg-1. The synthesis method is not only simple, green and economical, but also has important application value.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/chem.202402597\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202402597","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物质炭具有来源广、成本低、环保等优点,已被广泛应用于电化学储能领域。本研究以花生壳为碳源,硫脲为活化剂,制备了 N 和 S 共掺杂碳材料。当花生壳和活化剂的用量分别为 2 克和 4 克时,制备的 NSPC-4 具有最大的比表面积和特殊的孔隙结构。元素分析表明,活化剂为碳材料引入了更多的 N、S 和 O 原子,更多的杂原子有助于改善碳材料的表面结构,提供额外的假电容。此外,NSPC-4 还含有短程有序石墨结构,可提供出色的导电性。电化学测试结果表明,NSPC-4 具有最大的比电容。当活化剂的质量大于或小于 4 克时,碳材料的电化学性能会降低。当功率密度为 350 W kg-1 时,NSPC-4 组装的对称超级电容器(SSC)的能量密度为 8.3 Wh kg-1。该合成方法不仅简单、绿色、经济,而且具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Step Carbonization Synthesis of N, S Co-Doped Carbon Materials Derived from Agricultural Waste Peanut Shells for High-Performance Symmetric Supercapacitors.

Biomass carbon has the advantages of wide source, low cost and environmental protection, and has been widely used in the field of electrochemical energy storage. In this work, N and S co-doped carbon materials were prepared by using peanut shell as carbon source and thiourea as activator. When the peanut shell and activator were 2 g and 4 g, respectively, the prepared NSPC-4 had the largest specific surface area and special pore structure. Elemental analysis showed that the activator introduced more N, S and O atoms to the carbon material, and more heteroatoms helped to improve the surface structure of the carbon material and provide additional pseudocapacitance. In addition, NSPC-4 contains a short-range ordered graphite structure, which can provide excellent electrical conductivity. The electrochemical test results show that NSPC-4 has the largest specific capacitance. When the mass of the activator is higher than or below 4 g, the electrochemical performance of the carbon material will be reduced. The symmetric supercapacitor (SSC) assembled by NSPC-4 has an energy density of 8.3 Wh kg-1 when the power density is 350 W kg-1. The synthesis method is not only simple, green and economical, but also has important application value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信