{"title":"从电气工程角度看计算物理学的自然性","authors":"P. Robert Kotiuga, Valtteri Lahtinen","doi":"10.1007/s10444-024-10197-6","DOIUrl":null,"url":null,"abstract":"<div><p>We look at computational physics from an electrical engineering perspective and suggest that several concepts of mathematics, not so well-established in computational physics literature, present themselves as opportunities in the field. We discuss elliptic complexes and highlight the category theoretical background and its role as a unifying language between algebraic topology, differential geometry, and modelling software design. In particular, the ubiquitous concept of naturality is central. Natural differential operators have functorial analogues on the cochains of triangulated manifolds. In order to establish this correspondence, we derive formulas involving simplices and barycentric coordinates, defining discrete vector fields and a discrete Lie derivative as a result of a discrete analogue of Cartan’s magic formula. This theorem is the main mathematical result of the paper.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electrical engineering perspective on naturality in computational physics\",\"authors\":\"P. Robert Kotiuga, Valtteri Lahtinen\",\"doi\":\"10.1007/s10444-024-10197-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We look at computational physics from an electrical engineering perspective and suggest that several concepts of mathematics, not so well-established in computational physics literature, present themselves as opportunities in the field. We discuss elliptic complexes and highlight the category theoretical background and its role as a unifying language between algebraic topology, differential geometry, and modelling software design. In particular, the ubiquitous concept of naturality is central. Natural differential operators have functorial analogues on the cochains of triangulated manifolds. In order to establish this correspondence, we derive formulas involving simplices and barycentric coordinates, defining discrete vector fields and a discrete Lie derivative as a result of a discrete analogue of Cartan’s magic formula. This theorem is the main mathematical result of the paper.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"50 5\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10197-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10197-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An electrical engineering perspective on naturality in computational physics
We look at computational physics from an electrical engineering perspective and suggest that several concepts of mathematics, not so well-established in computational physics literature, present themselves as opportunities in the field. We discuss elliptic complexes and highlight the category theoretical background and its role as a unifying language between algebraic topology, differential geometry, and modelling software design. In particular, the ubiquitous concept of naturality is central. Natural differential operators have functorial analogues on the cochains of triangulated manifolds. In order to establish this correspondence, we derive formulas involving simplices and barycentric coordinates, defining discrete vector fields and a discrete Lie derivative as a result of a discrete analogue of Cartan’s magic formula. This theorem is the main mathematical result of the paper.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.