基于电阻式内存的学习散列内存搜索,为推荐加速

Fei Wang, Woyu Zhang, Zhi Li, Ning Lin, Rui Bao, Xiaoxin Xu, Chunmeng Dou, Zhongrui Wang, Dashan Shang
{"title":"基于电阻式内存的学习散列内存搜索,为推荐加速","authors":"Fei Wang, Woyu Zhang, Zhi Li, Ning Lin, Rui Bao, Xiaoxin Xu, Chunmeng Dou, Zhongrui Wang, Dashan Shang","doi":"10.1038/s44335-024-00009-x","DOIUrl":null,"url":null,"abstract":"Similarity search is essential in current artificial intelligence applications and widely utilized in various fields, such as recommender systems. However, the exponential growth of data poses significant challenges in search time and energy consumption on traditional digital hardware. Here, we propose a software-hardware co-optimization to address these challenges. On the software side, we employ a learning-to-hash method for vector encoding and achieve an approximate nearest neighbor search by calculating Hamming distance, thereby reducing computational complexity. On the hardware side, we leverage the resistance random-access memory crossbar array to implement the hash encoding process and the content-addressable memory with an in-memory computing paradigm to lower the energy consumption during searches. Simulations on the MovieLens dataset demonstrate that the implementation achieves comparable accuracy to software and reduces energy consumption by 30-fold compared to traditional digital systems. These results provide insight into the development of energy-efficient in-memory search systems for edge computing.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00009-x.pdf","citationCount":"0","resultStr":"{\"title\":\"In-memory search with learning to hash based on resistive memory for recommendation acceleration\",\"authors\":\"Fei Wang, Woyu Zhang, Zhi Li, Ning Lin, Rui Bao, Xiaoxin Xu, Chunmeng Dou, Zhongrui Wang, Dashan Shang\",\"doi\":\"10.1038/s44335-024-00009-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarity search is essential in current artificial intelligence applications and widely utilized in various fields, such as recommender systems. However, the exponential growth of data poses significant challenges in search time and energy consumption on traditional digital hardware. Here, we propose a software-hardware co-optimization to address these challenges. On the software side, we employ a learning-to-hash method for vector encoding and achieve an approximate nearest neighbor search by calculating Hamming distance, thereby reducing computational complexity. On the hardware side, we leverage the resistance random-access memory crossbar array to implement the hash encoding process and the content-addressable memory with an in-memory computing paradigm to lower the energy consumption during searches. Simulations on the MovieLens dataset demonstrate that the implementation achieves comparable accuracy to software and reduces energy consumption by 30-fold compared to traditional digital systems. These results provide insight into the development of energy-efficient in-memory search systems for edge computing.\",\"PeriodicalId\":501715,\"journal\":{\"name\":\"npj Unconventional Computing\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44335-024-00009-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Unconventional Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44335-024-00009-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Unconventional Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44335-024-00009-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相似性搜索在当前的人工智能应用中至关重要,并广泛应用于推荐系统等多个领域。然而,数据的指数级增长给传统数字硬件的搜索时间和能耗带来了巨大挑战。在此,我们提出了一种软硬件协同优化的方法来应对这些挑战。在软件方面,我们采用学习到哈希(learning-to-hash)方法进行向量编码,并通过计算汉明距离(Hamming distance)实现近似近邻搜索,从而降低计算复杂度。在硬件方面,我们利用电阻式随机存取存储器横条阵列来实现哈希编码过程,并利用内容可寻址存储器的内存计算模式来降低搜索过程中的能耗。在 MovieLens 数据集上进行的仿真表明,与传统数字系统相比,该实现方法达到了与软件相当的精度,并将能耗降低了 30 倍。这些结果为开发用于边缘计算的高能效内存搜索系统提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-memory search with learning to hash based on resistive memory for recommendation acceleration

In-memory search with learning to hash based on resistive memory for recommendation acceleration
Similarity search is essential in current artificial intelligence applications and widely utilized in various fields, such as recommender systems. However, the exponential growth of data poses significant challenges in search time and energy consumption on traditional digital hardware. Here, we propose a software-hardware co-optimization to address these challenges. On the software side, we employ a learning-to-hash method for vector encoding and achieve an approximate nearest neighbor search by calculating Hamming distance, thereby reducing computational complexity. On the hardware side, we leverage the resistance random-access memory crossbar array to implement the hash encoding process and the content-addressable memory with an in-memory computing paradigm to lower the energy consumption during searches. Simulations on the MovieLens dataset demonstrate that the implementation achieves comparable accuracy to software and reduces energy consumption by 30-fold compared to traditional digital systems. These results provide insight into the development of energy-efficient in-memory search systems for edge computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信