{"title":"切变线引发菲律宾冬季季风期间的强降雨","authors":"Sheilla Mae Reyes, Seungyeon Lee, Seon Ki Park","doi":"10.1038/s41612-024-00780-5","DOIUrl":null,"url":null,"abstract":"Heavy rainfall events (HREs) occur almost throughout the year in the Philippines, with relatively limited research during the winter monsoon. This study analyzes the 20-year (2003–2022) daily precipitation from 55 rain gauges and Integrated Multi-satellitE Retrievals for GPM (IMERG) from November to February. HREs are classified into three clusters by employing a cluster analysis on the most pertinent principal modes extracted from the principal component analysis. Each cluster exhibits a distinct heavy rainfall spatial pattern, mostly showing more than 50 mm/day of rainfall in the eastern part of the country. We noted that heavy rainfall in the Philippines during the winter monsoon occurs during a strong East Asian Winter Monsoon and caused by the interaction of shear line and low-level cyclonic vortex. The different location of rainfall maxima in each HRE cluster is a result of the variation of locations of the shear line and cyclonic vortex.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-15"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00780-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Shear lines trigger heavy rainfalls in the Philippines during the winter monsoon\",\"authors\":\"Sheilla Mae Reyes, Seungyeon Lee, Seon Ki Park\",\"doi\":\"10.1038/s41612-024-00780-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heavy rainfall events (HREs) occur almost throughout the year in the Philippines, with relatively limited research during the winter monsoon. This study analyzes the 20-year (2003–2022) daily precipitation from 55 rain gauges and Integrated Multi-satellitE Retrievals for GPM (IMERG) from November to February. HREs are classified into three clusters by employing a cluster analysis on the most pertinent principal modes extracted from the principal component analysis. Each cluster exhibits a distinct heavy rainfall spatial pattern, mostly showing more than 50 mm/day of rainfall in the eastern part of the country. We noted that heavy rainfall in the Philippines during the winter monsoon occurs during a strong East Asian Winter Monsoon and caused by the interaction of shear line and low-level cyclonic vortex. The different location of rainfall maxima in each HRE cluster is a result of the variation of locations of the shear line and cyclonic vortex.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00780-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00780-5\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00780-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Shear lines trigger heavy rainfalls in the Philippines during the winter monsoon
Heavy rainfall events (HREs) occur almost throughout the year in the Philippines, with relatively limited research during the winter monsoon. This study analyzes the 20-year (2003–2022) daily precipitation from 55 rain gauges and Integrated Multi-satellitE Retrievals for GPM (IMERG) from November to February. HREs are classified into three clusters by employing a cluster analysis on the most pertinent principal modes extracted from the principal component analysis. Each cluster exhibits a distinct heavy rainfall spatial pattern, mostly showing more than 50 mm/day of rainfall in the eastern part of the country. We noted that heavy rainfall in the Philippines during the winter monsoon occurs during a strong East Asian Winter Monsoon and caused by the interaction of shear line and low-level cyclonic vortex. The different location of rainfall maxima in each HRE cluster is a result of the variation of locations of the shear line and cyclonic vortex.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.